L'affirmation du conséquent est un sophisme formel par lequel on considère une condition suffisante comme une condition nécessaire. On traite alors une implication logique comme si elle était une équivalence logique. En langage naturel, l'affirmation du conséquent s'exprime : 1. * Si P alors Q 2. * Q 3. * Donc, P

Property Value
dbo:abstract
  • L'affirmation du conséquent est un sophisme formel par lequel on considère une condition suffisante comme une condition nécessaire. On traite alors une implication logique comme si elle était une équivalence logique. En langage naturel, l'affirmation du conséquent s'exprime : 1. * Si P alors Q 2. * Q 3. * Donc, P Le conséquent Q de l'énoncé conditionnel Si P alors Q peut être réalisé même si l'antécédent P ne l'est pas. On nomme ainsi ce sophisme « affirmation du conséquent », car il consiste à affirmer que le conséquent est réalisé pour en inférer que son antécédent l'est aussi. En logique, ce raisonnement invalide prend la forme : ((P ⇒ Q) ∧ Q) ⇒ P. C'est en quelque sorte une confusion entre la possibilité et la nécessité. La possibilité implique que plusieurs causes peuvent avoir la même conséquence. Il faut pour cela s'assurer des interactions entre les causes pour la même conséquence. Pour que l'affirmation du conséquent soit valide, il faut que la cause et la conséquence soient non-seulement liées mais qu'il n'y ait également aucune autre possibilité envisageable. (fr)
  • L'affirmation du conséquent est un sophisme formel par lequel on considère une condition suffisante comme une condition nécessaire. On traite alors une implication logique comme si elle était une équivalence logique. En langage naturel, l'affirmation du conséquent s'exprime : 1. * Si P alors Q 2. * Q 3. * Donc, P Le conséquent Q de l'énoncé conditionnel Si P alors Q peut être réalisé même si l'antécédent P ne l'est pas. On nomme ainsi ce sophisme « affirmation du conséquent », car il consiste à affirmer que le conséquent est réalisé pour en inférer que son antécédent l'est aussi. En logique, ce raisonnement invalide prend la forme : ((P ⇒ Q) ∧ Q) ⇒ P. C'est en quelque sorte une confusion entre la possibilité et la nécessité. La possibilité implique que plusieurs causes peuvent avoir la même conséquence. Il faut pour cela s'assurer des interactions entre les causes pour la même conséquence. Pour que l'affirmation du conséquent soit valide, il faut que la cause et la conséquence soient non-seulement liées mais qu'il n'y ait également aucune autre possibilité envisageable. (fr)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 3705821 (xsd:integer)
dbo:wikiPageLength
  • 5898 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 175860967 (xsd:integer)
dbo:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • L'affirmation du conséquent est un sophisme formel par lequel on considère une condition suffisante comme une condition nécessaire. On traite alors une implication logique comme si elle était une équivalence logique. En langage naturel, l'affirmation du conséquent s'exprime : 1. * Si P alors Q 2. * Q 3. * Donc, P (fr)
  • L'affirmation du conséquent est un sophisme formel par lequel on considère une condition suffisante comme une condition nécessaire. On traite alors une implication logique comme si elle était une équivalence logique. En langage naturel, l'affirmation du conséquent s'exprime : 1. * Si P alors Q 2. * Q 3. * Donc, P (fr)
rdfs:label
  • Affirmation du conséquent (fr)
  • Affirming the consequent (en)
  • Afirmació del conseqüent (ca)
  • Afirmación del consecuente (es)
  • Підтвердження консеквентом (uk)
  • 肯定後件 (zh)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is oa:hasTarget of
is foaf:primaryTopic of