Le livre IX des Éléments d'Euclide poursuit l'étude de l'arithmétique, commencée dans les livres VII et VIII. On y prouve plusieurs théorèmes majeurs : l'infinité des nombres premiers, la somme des termes d'une suite géométrique et la forme des nombres parfaits pairs. Il comporte 36 propositions.
Le livre IX des Éléments d'Euclide poursuit l'étude de l'arithmétique, commencée dans les livres VII et VIII. On y prouve plusieurs théorèmes majeurs : l'infinité des nombres premiers, la somme des termes d'une suite géométrique et la forme des nombres parfaits pairs. Il comporte 36 propositions.