Property |
Value |
dbo:abstract
|
- Un algorithme à directions de descente est un algorithme d'optimisation différentiable (l'optimisation dont il est question ici est une branche des mathématiques), destiné à minimiser une fonction réelle différentiable définie sur un espace euclidien (par exemple, , l'espace des -uplets de nombres réels, muni d'un produit scalaire) ou, plus généralement, sur un espace hilbertien. L'algorithme est itératif et procède donc par améliorations successives. Au point courant, un déplacement est effectué le long d'une direction de descente, de manière à faire décroître la fonction. Le déplacement le long de cette direction est déterminé par la technique numérique connue sous le nom de recherche linéaire. Cette approche algorithmique peut être vue comme une technique de globalisation, c'est-à-dire une méthode permettant d'obtenir la convergence des itérés (sous certaines conditions) quel que soit l'itéré initial choisi. Elle s'apparente ainsi aux algorithmes à régions de confiance ; ces dernières améliorent légèrement (mais parfois de manière décisive) leurs résultats de convergence mais sont plus compliquées à mettre en œuvre, ce qui limite parfois leur application. Les algorithmes à directions de descente s'étendent aux problèmes avec contraintes simples (pourvu que la projection sur l'ensemble admissible soit aisée, peu coûteuse en temps de calcul) ou pour des problèmes avec contraintes fonctionnelles non linéaires, par l'intermédiaire de fonctions de mérite. Elles sont aussi utilisées en . (fr)
- Un algorithme à directions de descente est un algorithme d'optimisation différentiable (l'optimisation dont il est question ici est une branche des mathématiques), destiné à minimiser une fonction réelle différentiable définie sur un espace euclidien (par exemple, , l'espace des -uplets de nombres réels, muni d'un produit scalaire) ou, plus généralement, sur un espace hilbertien. L'algorithme est itératif et procède donc par améliorations successives. Au point courant, un déplacement est effectué le long d'une direction de descente, de manière à faire décroître la fonction. Le déplacement le long de cette direction est déterminé par la technique numérique connue sous le nom de recherche linéaire. Cette approche algorithmique peut être vue comme une technique de globalisation, c'est-à-dire une méthode permettant d'obtenir la convergence des itérés (sous certaines conditions) quel que soit l'itéré initial choisi. Elle s'apparente ainsi aux algorithmes à régions de confiance ; ces dernières améliorent légèrement (mais parfois de manière décisive) leurs résultats de convergence mais sont plus compliquées à mettre en œuvre, ce qui limite parfois leur application. Les algorithmes à directions de descente s'étendent aux problèmes avec contraintes simples (pourvu que la projection sur l'ensemble admissible soit aisée, peu coûteuse en temps de calcul) ou pour des problèmes avec contraintes fonctionnelles non linéaires, par l'intermédiaire de fonctions de mérite. Elles sont aussi utilisées en . (fr)
|
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 11841 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-fr:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- Un algorithme à directions de descente est un algorithme d'optimisation différentiable (l'optimisation dont il est question ici est une branche des mathématiques), destiné à minimiser une fonction réelle différentiable définie sur un espace euclidien (par exemple, , l'espace des -uplets de nombres réels, muni d'un produit scalaire) ou, plus généralement, sur un espace hilbertien. L'algorithme est itératif et procède donc par améliorations successives. Au point courant, un déplacement est effectué le long d'une direction de descente, de manière à faire décroître la fonction. Le déplacement le long de cette direction est déterminé par la technique numérique connue sous le nom de recherche linéaire. (fr)
- Un algorithme à directions de descente est un algorithme d'optimisation différentiable (l'optimisation dont il est question ici est une branche des mathématiques), destiné à minimiser une fonction réelle différentiable définie sur un espace euclidien (par exemple, , l'espace des -uplets de nombres réels, muni d'un produit scalaire) ou, plus généralement, sur un espace hilbertien. L'algorithme est itératif et procède donc par améliorations successives. Au point courant, un déplacement est effectué le long d'une direction de descente, de manière à faire décroître la fonction. Le déplacement le long de cette direction est déterminé par la technique numérique connue sous le nom de recherche linéaire. (fr)
|
rdfs:label
|
- Algorithme à directions de descente (fr)
- Algorithme à directions de descente (fr)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageWikiLink
of | |
is oa:hasTarget
of | |
is foaf:primaryTopic
of | |