About: dbpedia-fr:Théorème_des_fermés_emboîtés     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : fr.dbpedia.org associated with source document(s)

AttributesValues
rdfs:label
  • Théorème des fermés emboîtés (fr)
rdfs:comment
  • En mathématiques, plus précisément en topologie, le théorème des fermés emboîtés affirme que si un espace métrique (E, d) est complet alors, pour toute suite décroissante de fermés non vides Fn de E dont le diamètre tend vers zéro, l'intersection des Fn est réduite à un point. Pour une démonstration, voir par exemple le paragraphe « Espace complet » de la leçon « Topologie générale », sur Wikiversité. On peut prouver, directement, ce cas particulier du théorème des fermés emboîtés, en remarquant que les suites (an) et (bn) sont alors adjacentes. * Portail des mathématiques (fr)
sameAs
Wikipage page ID
Wikipage revision ID
dbo:wikiPageWikiLink
page length (characters) of wiki page
dct:subject
prop-fr:wikiPageUsesTemplate
prov:wasDerivedFrom
prop-fr:contenu
  • Pour une démonstration, voir par exemple le paragraphe « Espace complet » de la leçon « Topologie générale », sur Wikiversité. (fr)
prop-fr:projet
  • Wikiversité (fr)
foaf:isPrimaryTopicOf
has abstract
  • En mathématiques, plus précisément en topologie, le théorème des fermés emboîtés affirme que si un espace métrique (E, d) est complet alors, pour toute suite décroissante de fermés non vides Fn de E dont le diamètre tend vers zéro, l'intersection des Fn est réduite à un point. Pour une démonstration, voir par exemple le paragraphe « Espace complet » de la leçon « Topologie générale », sur Wikiversité. La réciproque de ce théorème est vraie : si un espace métrique vérifie la propriété des fermés emboîtés alors il est complet. En effet, pour toute suite x, l'intersection des fermés emboîtés {xn | n ≥ N} est l'ensemble des valeurs d'adhérence de x, et la suite est de Cauchy si et seulement si la suite de leurs diamètres tend vers 0. Par conséquent, si l'espace vérifie la propriété des fermés emboîtés, alors toute suite de Cauchy possède une valeur d'adhérence, donc converge. Lorsque E = ℝ et les fermés sont des intervalles fermés, le théorème prend la forme suivante : soit [an, bn] une suite décroissante de segments de ℝ tels que bn – an tende vers zéro, alors l'intersection des segments [an, bn] est un singleton. Ce corollaire particulier est connu sous le nom de théorème des segments emboîtés. On peut prouver, directement, ce cas particulier du théorème des fermés emboîtés, en remarquant que les suites (an) et (bn) sont alors adjacentes. Dans un espace complet quelconque, l'hypothèse que les diamètres sont seulement finis (sans tendre vers 0) ne suffirait pas pour que l'intersection soit non vide (voir la démonstration du théorème de Riesz). Mais dans un espace euclidien, toute intersection d'une suite décroissante de fermés bornés non vides est non vide car ce sont des compacts, ce qui permet d'appliquer le théorème des compacts emboîtés. * Portail des mathématiques (fr)
is dbo:wikiPageWikiLink of
is Wikipage redirect of
is oa:hasTarget of
is foaf:primaryTopic of
Faceted Search & Find service v1.16.111 as of Oct 19 2022


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3234 as of May 18 2022, on Linux (x86_64-ubuntu_bionic-linux-gnu), Single-Server Edition (39 GB total memory, 20 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software