About: Curry's paradox     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : fr.dbpedia.org associated with source document(s)

AttributesValues
rdfs:label
  • Curry's paradox (en)
  • Currys Paradoxon (de)
  • Paradoja de Curry (es)
  • Paradosso di Curry (it)
  • Paradoxa de Curry (ca)
  • Paradoxe de Curry (fr)
  • Paradoxo de Curry (pt)
  • Парадокс Карри (ru)
  • カリーのパラドックス (ja)
rdfs:comment
  • Le paradoxe de Curry fut présenté par le mathématicien Haskell Curry en 1942 et permet d'arriver à n'importe quelle conclusion à partir d'une phrase auto-référentielle et de quelques règles logiques simples. Une telle phrase s'énonce : Si cette phrase est vraie, alors le monstre du Memphrémagog existe. C'est une traduction, en logique minimale, du paradoxe de Russell (théorie des ensembles), ou de la phrase de Gödel (théorie de la démonstration).[réf. nécessaire] (fr)
rdfs:seeAlso
sameAs
Wikipage page ID
Wikipage revision ID
dbo:wikiPageWikiLink
Link from a Wikipage to an external page
page length (characters) of wiki page
dct:subject
prop-fr:wikiPageUsesTemplate
prov:wasDerivedFrom
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/Memphre_simple.svg
thumbnail
foaf:isPrimaryTopicOf
named after
has abstract
  • Le paradoxe de Curry fut présenté par le mathématicien Haskell Curry en 1942 et permet d'arriver à n'importe quelle conclusion à partir d'une phrase auto-référentielle et de quelques règles logiques simples. Une telle phrase s'énonce : Si cette phrase est vraie, alors le monstre du Memphrémagog existe. C'est une traduction, en logique minimale, du paradoxe de Russell (théorie des ensembles), ou de la phrase de Gödel (théorie de la démonstration).[réf. nécessaire] Il est aussi nommé le paradoxe de Löb puisque la preuve se déroule de manière semblable à celle du théorème de Löb publié en 1955 par le mathématicien Martin Löb. (fr)
is dbo:wikiPageWikiLink of
is oa:hasTarget of
is foaf:primaryTopic of
Faceted Search & Find service v1.16.111 as of Oct 19 2022


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3234 as of May 18 2022, on Linux (x86_64-ubuntu_bionic-linux-gnu), Single-Server Edition (39 GB total memory, 6 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software