About: Diffraction     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : fr.dbpedia.org associated with source document(s)

AttributesValues
rdfs:label
  • Diffraction (en)
  • Diffraction par une fente (fr)
  • Optischer Spalt (de)
rdfs:comment
  • La diffraction par une fente est un modèle théorique utilisé pour modéliser les phénomènes de diffraction en optique. La diffraction par une fente peut également s'appliquer, en raison du principe de Babinet, pour décrire la figure de diffraction obtenue avec un fil placé sur le trajet d'un rayon lumineux. Une fente est une ouverture de largeur a et de longueur infinie, centrée sur l'origine (la fente s'étend de -a/2 à a/2 dans l'axe des x). Du fait de la symétrie par translation du problème, on ne considère les variations d'intensité que sur un seul axe x. où définit la fonction sinus cardinal. (fr)
sameAs
Link from a Wikipa... related subject.
Wikipage page ID
Wikipage revision ID
dbo:wikiPageWikiLink
page length (characters) of wiki page
dct:subject
prop-fr:wikiPageUsesTemplate
prov:wasDerivedFrom
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/Diffraction_par_une_fente.png
thumbnail
foaf:isPrimaryTopicOf
has abstract
  • La diffraction par une fente est un modèle théorique utilisé pour modéliser les phénomènes de diffraction en optique. La diffraction par une fente peut également s'appliquer, en raison du principe de Babinet, pour décrire la figure de diffraction obtenue avec un fil placé sur le trajet d'un rayon lumineux. Une fente est une ouverture de largeur a et de longueur infinie, centrée sur l'origine (la fente s'étend de -a/2 à a/2 dans l'axe des x). Du fait de la symétrie par translation du problème, on ne considère les variations d'intensité que sur un seul axe x. On se place dans le cas où l'écran est situé à l'infini (diffraction de Fraunhofer), c'est-à-dire que les rayons qui arrivent en un point M sont considérés comme parallèles. C'est le cas si l'écran est placé à plusieurs mètres de la fente, ou bien si l'on met l'écran dans le plan focal image d'une lentille convergente. Si l'on appelle D la distance entre l'écran et la fente, alors l'intensité I en un point x de l'écran s'écrit : où définit la fonction sinus cardinal. L'intensité a donc une pseudo période spatiale A valant : (fr)
is dbo:wikiPageWikiLink of
is Wikipage redirect of
is oa:hasTarget of
is foaf:primaryTopic of
Faceted Search & Find service v1.16.111 as of Oct 19 2022


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3234 as of May 18 2022, on Linux (x86_64-ubuntu_bionic-linux-gnu), Single-Server Edition (39 GB total memory, 12 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software