This HTML5 document contains 249 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
dbpedia-huhttp://hu.dbpedia.org/resource/
n7https://books.google.com/
n12https://archive.org/details/advancesingrapht0000camb/page/
n24http://g.co/kg/m/
n9http://www.math.uni-hamburg.de/home/diestel/books/graph.theory/preview/
dbpedia-ruhttp://ru.dbpedia.org/resource/
rdfshttp://www.w3.org/2000/01/rdf-schema#
n10https://research.utwente.nl/en/publications/
n20https://www.researchgate.net/publication/
category-frhttp://fr.dbpedia.org/resource/Catégorie:
n8http://fr.dbpedia.org/resource/Modèle:
n11http://fr.dbpedia.org/resource/Fichier:
wikipedia-frhttp://fr.wikipedia.org/wiki/
n19http://commons.wikimedia.org/wiki/Special:FilePath/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
dbpedia-frhttp://fr.dbpedia.org/resource/
prop-frhttp://fr.dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
dbrhttp://dbpedia.org/resource/
wikidatahttp://www.wikidata.org/entity/

Statements

Subject Item
dbpedia-fr:Théorème_de_Fleischner
rdfs:label
Théorème de Fleischner
rdfs:comment
En théorie des graphes, le théorème de Fleischner donne une condition suffisante pour qu'un graphe contienne un cycle hamiltonien. Il dit que le (en) d'un graphe biconnexe est un graphe hamiltonien. Le théorème porte le nom de Herbert Fleischner, qui en a publié la preuve en 1974.
owl:sameAs
wikidata:Q5458529 dbr:Fleischner's_theorem dbpedia-ru:Теорема_Фляйшнера dbpedia-hu:Fleischner-tétel n24:0r4t32b
dbo:wikiPageID
13908237
dbo:wikiPageRevisionID
179782305
dbo:wikiPageWikiLink
dbpedia-fr:Théorie_des_graphes dbpedia-fr:Crispin_Nash-Williams dbpedia-fr:Conjecture dbpedia-fr:Algorithme_d'approximation dbpedia-fr:Carsten_Thomassen dbpedia-fr:Graphe_de_Petersen dbpedia-fr:Journal_of_Combinatorial_Theory dbpedia-fr:Václav_Chvátal n11:Fleischner's_theorem.svg dbpedia-fr:Bout_(théorie_des_graphes) dbpedia-fr:Compacité_(mathématiques) dbpedia-fr:Michael_D._Plummer dbpedia-fr:Point_d'articulation_(théorie_des_graphes) dbpedia-fr:Espace_métrique dbpedia-fr:Graphe_biparti_complet dbpedia-fr:Graphe_(mathématiques_discrètes) dbpedia-fr:Problème_NP-complet dbpedia-fr:Cycle_(théorie_des_graphes) dbpedia-fr:Graphe_sommet-connexe dbpedia-fr:Dureté_d'un_graphe dbpedia-fr:Discrete_Mathematics dbpedia-fr:Complexe_simplicial category-fr:Théorème_de_la_théorie_des_graphes dbpedia-fr:Graphe_hamiltonien dbpedia-fr:Homéomorphisme dbpedia-fr:Herbert_Fleischner
dbo:wikiPageExternalLink
n7:books%3Fid=K6-FvXRlKsQC&pg=PA139 n9:Ch10.pdf n10:not-every-2tough-graph-is-hamiltonian(8189db8b-1470-4c06-b5a2-19d621bfc91b).html n20:220430962 n12:269
dbo:wikiPageLength
13929
dct:subject
category-fr:Théorème_de_la_théorie_des_graphes
prop-fr:wikiPageUsesTemplate
n8:Harv n8:Article n8:Sfnp n8:Références n8:Portail n8:Théorème n8:' n8:Lien n8:Ouvrage
prov:wasDerivedFrom
wikipedia-fr:Théorème_de_Fleischner?oldid=179782305&ns=0
foaf:depiction
n19:Fleischner's_theorem.svg
prop-fr:année
2018 1991 1984 1995 2000 2012 2010 2009 1974 1973 1971 1980 1978 1976
prop-fr:champLibre
Ph.D. thesis
prop-fr:date
1986
prop-fr:doi
10.1137 10.1016 10.1145 10.1007
prop-fr:fr
puissance d'un graphe
prop-fr:isbn
978 9781439826270
prop-fr:journal
Journal of Combinatorial Theory B Monatshefte für Mathematik Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms Advances in Mathematics dbpedia-fr:Discrete_Mathematics Proceedings of the Second Louisiana Conference on Combinatorics, Graph Theory and Computing Operations Research Letters dbpedia-fr:Journal_of_Combinatorial_Theory Advances in Graph Theory Journal of the ACM Discrete Applied Mathematics
prop-fr:lienAuteur
Ping Zhang Dorit S. Hochbaum Carsten Thomassen Crispin Nash-Williams Gary Chartrand Václav Chvátal David Shmoys John Adrian Bondy Arthur Hobbs
prop-fr:lieu
Montreal Amsterdam New York, NY, USA Baton Rouge, Louisiana
prop-fr:nom
Broersma Hochbaum Lesniak Kapoor Diestel Shmoys Fleischner Underground Georgakopoulos Parker Nash-Williams Veldman Müttel Rautenbach Zhang Bauer Lau Chartrand Jung Bondy Rotenberg Chvátal Hobbs Rardin Říha Thomassen Alstrup
prop-fr:numéro
19 6 2 3 1 23
prop-fr:page
323
prop-fr:pages
1929 29 1 269 317 6632 290 125 670 117 1645 167 215 533
prop-fr:passage
3 139
prop-fr:prénom
R. Garey Václav Stanislav C. St. J. A. H. T. Janina S. F. Reinhard Eva David B. J. A. Polly Dorit S. Carsten Stephen Herbert Ping Agelos Dieter Arthur M. G. Ronald L. Linda Gary H. A. D. H. J.
prop-fr:texte
carré
prop-fr:titre
Graphs & Digraphs A short proof of Fleischner's theorem Tough graphs and Hamiltonian circuits In the square of graphs, Hamiltonicity and pancyclicity, Hamiltonian connectedness and panconnectedness are equivalent concepts Guaranteed performance heuristics for the bottleneck traveling salesman problem A new proof of the theorem by Fleischner Not every 2-tough graph is Hamiltonian Finding a Hamiltonian cycle in the square of a block. The square of a block is Hamiltonian connected Handbook of combinatorics, Vol. 1, 2 A Hamiltonian Cycle in the Square of a 2-connected Graph in Linear Time Hamiltonian paths in squares of infinite locally finite blocks A short proof of the versatile version of Fleischner's theorem On graphs with Hamiltonian squares Pancyclic graphs Infinite Hamilton cycles in squares of locally finite graphs A unified approach to approximation algorithms for bottleneck problems The square of a block is vertex pancyclic The square of every two-connected graph is Hamiltonian Graph Theory
prop-fr:trad
Graph power
prop-fr:url
n7:books%3Fid=K6-FvXRlKsQC&pg=PA139 n12:269 n20:220430962 n10:not-every-2tough-graph-is-hamiltonian(8189db8b-1470-4c06-b5a2-19d621bfc91b).html n9:Ch10.pdf
prop-fr:volume
220 99 309 82 313 52 33 20 21 16 5 2 3
prop-fr:éditeur
Elsevier CRC Press McGill University ACM Louisiana State University
prop-fr:chapitre
Basic graph theory: paths and circuits 10
prop-fr:numéroÉdition
4 5
prop-fr:editorFirst
B.
prop-fr:editorLast
Bollobás
prop-fr:editorLink
Béla Bollobás
prop-fr:mr
325458 416980 2558627 345865 1743840 1373656 316301 427135 2483226 522906 1109427 499125 332573
prop-fr:series
Annals of Discrete Mathematics Series B
dbo:thumbnail
n19:Fleischner's_theorem.svg?width=300
prop-fr:department
Proceedings of the 5th Twente Workshop on Graphs and Combinatorial Optimization
foaf:isPrimaryTopicOf
wikipedia-fr:Théorème_de_Fleischner
dbo:namedAfter
dbpedia-fr:Herbert_Fleischner
dbo:abstract
En théorie des graphes, le théorème de Fleischner donne une condition suffisante pour qu'un graphe contienne un cycle hamiltonien. Il dit que le (en) d'un graphe biconnexe est un graphe hamiltonien. Le théorème porte le nom de Herbert Fleischner, qui en a publié la preuve en 1974.