En théorie des graphes, la matrice d'Edmonds d'un graphe biparti équilibré , c'est-à-dire tel que (où et sont les deux ensembles disjoints de ses sommets), est définie par : où sont les indéterminées. Une application de la matrice d'Edmonds d'un graphe biparti est que le graphe admet un couplage parfait si et seulement si le polynôme en les est non-identiquement nul. De plus, le nombre de couplage parfaits est égal au nombre de monômes dans le polynôme et est aussi égal au permanent de . Enfin, le rang de est égal au nombre de couplages maximaux de . * Portail des mathématiques

Property Value
dbo:abstract
  • En théorie des graphes, la matrice d'Edmonds d'un graphe biparti équilibré , c'est-à-dire tel que (où et sont les deux ensembles disjoints de ses sommets), est définie par : où sont les indéterminées. Une application de la matrice d'Edmonds d'un graphe biparti est que le graphe admet un couplage parfait si et seulement si le polynôme en les est non-identiquement nul. De plus, le nombre de couplage parfaits est égal au nombre de monômes dans le polynôme et est aussi égal au permanent de . Enfin, le rang de est égal au nombre de couplages maximaux de . Le nom matrice d'Edmonds provient du mathématicien Jack Edmonds. Sa généralisation aux graphes non-bipartis est la matrice de Tutte. * Portail des mathématiques (fr)
  • En théorie des graphes, la matrice d'Edmonds d'un graphe biparti équilibré , c'est-à-dire tel que (où et sont les deux ensembles disjoints de ses sommets), est définie par : où sont les indéterminées. Une application de la matrice d'Edmonds d'un graphe biparti est que le graphe admet un couplage parfait si et seulement si le polynôme en les est non-identiquement nul. De plus, le nombre de couplage parfaits est égal au nombre de monômes dans le polynôme et est aussi égal au permanent de . Enfin, le rang de est égal au nombre de couplages maximaux de . Le nom matrice d'Edmonds provient du mathématicien Jack Edmonds. Sa généralisation aux graphes non-bipartis est la matrice de Tutte. * Portail des mathématiques (fr)
dbo:namedAfter
dbo:wikiPageID
  • 14809264 (xsd:integer)
dbo:wikiPageLength
  • 1356 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 191411667 (xsd:integer)
dbo:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • En théorie des graphes, la matrice d'Edmonds d'un graphe biparti équilibré , c'est-à-dire tel que (où et sont les deux ensembles disjoints de ses sommets), est définie par : où sont les indéterminées. Une application de la matrice d'Edmonds d'un graphe biparti est que le graphe admet un couplage parfait si et seulement si le polynôme en les est non-identiquement nul. De plus, le nombre de couplage parfaits est égal au nombre de monômes dans le polynôme et est aussi égal au permanent de . Enfin, le rang de est égal au nombre de couplages maximaux de . * Portail des mathématiques (fr)
  • En théorie des graphes, la matrice d'Edmonds d'un graphe biparti équilibré , c'est-à-dire tel que (où et sont les deux ensembles disjoints de ses sommets), est définie par : où sont les indéterminées. Une application de la matrice d'Edmonds d'un graphe biparti est que le graphe admet un couplage parfait si et seulement si le polynôme en les est non-identiquement nul. De plus, le nombre de couplage parfaits est égal au nombre de monômes dans le polynôme et est aussi égal au permanent de . Enfin, le rang de est égal au nombre de couplages maximaux de . * Portail des mathématiques (fr)
rdfs:label
  • Matrice d'Edmonds (fr)
  • Matrice d'Edmonds (fr)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is oa:hasTarget of
is foaf:primaryTopic of