En théorie des probabilités, l'inégalité d'Efron-Stein permet de borner la variance d'une fonction générale de variables aléatoires indépendantes. Cette inégalité peut être couplée avec d'autres inégalités de concentration classiques, comme l'inégalité de Bienaymé-Tchebychev.

Property Value
dbo:abstract
  • En théorie des probabilités, l'inégalité d'Efron-Stein permet de borner la variance d'une fonction générale de variables aléatoires indépendantes. Cette inégalité peut être couplée avec d'autres inégalités de concentration classiques, comme l'inégalité de Bienaymé-Tchebychev. (fr)
  • En théorie des probabilités, l'inégalité d'Efron-Stein permet de borner la variance d'une fonction générale de variables aléatoires indépendantes. Cette inégalité peut être couplée avec d'autres inégalités de concentration classiques, comme l'inégalité de Bienaymé-Tchebychev. (fr)
dbo:wikiPageID
  • 10356392 (xsd:integer)
dbo:wikiPageLength
  • 7628 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 182655336 (xsd:integer)
dbo:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • En théorie des probabilités, l'inégalité d'Efron-Stein permet de borner la variance d'une fonction générale de variables aléatoires indépendantes. Cette inégalité peut être couplée avec d'autres inégalités de concentration classiques, comme l'inégalité de Bienaymé-Tchebychev. (fr)
  • En théorie des probabilités, l'inégalité d'Efron-Stein permet de borner la variance d'une fonction générale de variables aléatoires indépendantes. Cette inégalité peut être couplée avec d'autres inégalités de concentration classiques, comme l'inégalité de Bienaymé-Tchebychev. (fr)
rdfs:label
  • Inégalité d'Efron-Stein (fr)
  • Inégalité d'Efron-Stein (fr)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is oa:hasTarget of
is foaf:primaryTopic of