Étant donnée une application linéaire f : E → F, son conoyau est l'espace vectoriel quotient F / Im(f ) de l'espace d'arrivée par l'image de l'application. Il peut être noté Coker(f ). Si E et F sont de dimensions finies, alors . Si E et F sont des espaces vectoriels normés complets, une application linéaire continue f est un opérateur de Fredholm si son noyau et son conoyau sont de dimensions finies (c'est donc toujours le cas sur les espaces de dimension finie). Dans ce cas, la différence dim Ker(f )-dim Coker(f ) s'appelle l'indice de f. * Portail de l’algèbre

Property Value
dbo:abstract
  • Étant donnée une application linéaire f : E → F, son conoyau est l'espace vectoriel quotient F / Im(f ) de l'espace d'arrivée par l'image de l'application. Il peut être noté Coker(f ). Si E et F sont de dimensions finies, alors . Si E et F sont des espaces vectoriels normés complets, une application linéaire continue f est un opérateur de Fredholm si son noyau et son conoyau sont de dimensions finies (c'est donc toujours le cas sur les espaces de dimension finie). Dans ce cas, la différence dim Ker(f )-dim Coker(f ) s'appelle l'indice de f. * Portail de l’algèbre (fr)
  • Étant donnée une application linéaire f : E → F, son conoyau est l'espace vectoriel quotient F / Im(f ) de l'espace d'arrivée par l'image de l'application. Il peut être noté Coker(f ). Si E et F sont de dimensions finies, alors . Si E et F sont des espaces vectoriels normés complets, une application linéaire continue f est un opérateur de Fredholm si son noyau et son conoyau sont de dimensions finies (c'est donc toujours le cas sur les espaces de dimension finie). Dans ce cas, la différence dim Ker(f )-dim Coker(f ) s'appelle l'indice de f. * Portail de l’algèbre (fr)
dbo:wikiPageID
  • 2442918 (xsd:integer)
dbo:wikiPageLength
  • 913 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 160335651 (xsd:integer)
dbo:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • Étant donnée une application linéaire f : E → F, son conoyau est l'espace vectoriel quotient F / Im(f ) de l'espace d'arrivée par l'image de l'application. Il peut être noté Coker(f ). Si E et F sont de dimensions finies, alors . Si E et F sont des espaces vectoriels normés complets, une application linéaire continue f est un opérateur de Fredholm si son noyau et son conoyau sont de dimensions finies (c'est donc toujours le cas sur les espaces de dimension finie). Dans ce cas, la différence dim Ker(f )-dim Coker(f ) s'appelle l'indice de f. * Portail de l’algèbre (fr)
  • Étant donnée une application linéaire f : E → F, son conoyau est l'espace vectoriel quotient F / Im(f ) de l'espace d'arrivée par l'image de l'application. Il peut être noté Coker(f ). Si E et F sont de dimensions finies, alors . Si E et F sont des espaces vectoriels normés complets, une application linéaire continue f est un opérateur de Fredholm si son noyau et son conoyau sont de dimensions finies (c'est donc toujours le cas sur les espaces de dimension finie). Dans ce cas, la différence dim Ker(f )-dim Coker(f ) s'appelle l'indice de f. * Portail de l’algèbre (fr)
rdfs:label
  • Conoyau d'une application linéaire (fr)
  • Conoyau d'une application linéaire (fr)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is oa:hasTarget of
is foaf:primaryTopic of