En théorie des graphes, la conjecture d'Erdös-Faber-Lovász est un problème de coloration de graphes formulé en 1972 et résoluen 2021 . La conjecture affirme qu'un graphe formé de k cliques de taille k, tel que l'intersection de deux de ces cliques ont au plus un sommet en commun, est un graphe dont le nombre chromatique est inférieur ou égal à k. La conjecture pour a été prouvée numériquement en 2012 par David Romero et Frederico Alonso-Pecina.

Property Value
dbo:abstract
  • En théorie des graphes, la conjecture d'Erdös-Faber-Lovász est un problème de coloration de graphes formulé en 1972 et résoluen 2021 . La conjecture affirme qu'un graphe formé de k cliques de taille k, tel que l'intersection de deux de ces cliques ont au plus un sommet en commun, est un graphe dont le nombre chromatique est inférieur ou égal à k. La conjecture pour a été prouvée numériquement en 2012 par David Romero et Frederico Alonso-Pecina. Une version de la conjecture qui utilise le nombre chromatique fractionnaire au lieu du nombre chromatique est connue pour être vraie. En d'autres termes, si un graphe G est l'union de k k-cliques dont l'intersection deux-à-deux est soit vide, soit réduite à un sommet, alors G peut être k coloré. (fr)
  • En théorie des graphes, la conjecture d'Erdös-Faber-Lovász est un problème de coloration de graphes formulé en 1972 et résoluen 2021 . La conjecture affirme qu'un graphe formé de k cliques de taille k, tel que l'intersection de deux de ces cliques ont au plus un sommet en commun, est un graphe dont le nombre chromatique est inférieur ou égal à k. La conjecture pour a été prouvée numériquement en 2012 par David Romero et Frederico Alonso-Pecina. Une version de la conjecture qui utilise le nombre chromatique fractionnaire au lieu du nombre chromatique est connue pour être vraie. En d'autres termes, si un graphe G est l'union de k k-cliques dont l'intersection deux-à-deux est soit vide, soit réduite à un sommet, alors G peut être k coloré. (fr)
dbo:namedAfter
dbo:thumbnail
dbo:wikiPageID
  • 13112828 (xsd:integer)
dbo:wikiPageLength
  • 2403 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 184679901 (xsd:integer)
dbo:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • En théorie des graphes, la conjecture d'Erdös-Faber-Lovász est un problème de coloration de graphes formulé en 1972 et résoluen 2021 . La conjecture affirme qu'un graphe formé de k cliques de taille k, tel que l'intersection de deux de ces cliques ont au plus un sommet en commun, est un graphe dont le nombre chromatique est inférieur ou égal à k. La conjecture pour a été prouvée numériquement en 2012 par David Romero et Frederico Alonso-Pecina. (fr)
  • En théorie des graphes, la conjecture d'Erdös-Faber-Lovász est un problème de coloration de graphes formulé en 1972 et résoluen 2021 . La conjecture affirme qu'un graphe formé de k cliques de taille k, tel que l'intersection de deux de ces cliques ont au plus un sommet en commun, est un graphe dont le nombre chromatique est inférieur ou égal à k. La conjecture pour a été prouvée numériquement en 2012 par David Romero et Frederico Alonso-Pecina. (fr)
rdfs:label
  • Гипотеза Эрдёша — Фабера — Ловаса (ru)
  • Conjecture d'Erdős-Faber-Lovász (fr)
  • Erdős–Faber–Lovász conjecture (en)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is oa:hasTarget of
is foaf:primaryTopic of