En algèbre commutative, un anneau intégralement clos est un anneau intègre A qui est sa propre clôture intégrale dans son corps des fractions, c'est-à-dire que, pour tout p et tout q non nul appartenant à A, si p/q est racine d'un polynôme unitaire à coefficients dans A alors p/q appartient à A. * Tout anneau intègre à PGCD est intégralement clos, ce qui est le cas de tout anneau factoriel et de tout anneau de Bézout, en particulier (à double titre) de tout anneau principal, donc de tout anneau euclidien comme l'anneau Z.Démonstration Soit A un anneau intègre à PGCD. puis en multipliant par

Property Value
dbo:abstract
  • En algèbre commutative, un anneau intégralement clos est un anneau intègre A qui est sa propre clôture intégrale dans son corps des fractions, c'est-à-dire que, pour tout p et tout q non nul appartenant à A, si p/q est racine d'un polynôme unitaire à coefficients dans A alors p/q appartient à A. * Tout anneau intègre à PGCD est intégralement clos, ce qui est le cas de tout anneau factoriel et de tout anneau de Bézout, en particulier (à double titre) de tout anneau principal, donc de tout anneau euclidien comme l'anneau Z.Démonstration Soit A un anneau intègre à PGCD. Soit un polynôme unitaire (c'est-à-dire que ) à coefficients dans A et x un élément du corps des fractions de A. Cet élément x peut s'écrire p/q, où p et q sont des éléments de A premiers entre eux. Si x est une racine de P alors puis en multipliant par Puisque, pour tout i < n, q divise , on en déduit que q divise aussi . Or q et p sont premiers entre eux ; d'après le lemme de Gauss, q doit alors diviser 1, autrement dit q est inversible dans A, donc l'élément x = p/q appartient à A. * Plus généralement, un anneau intègre A, de corps des fractions K, est intégralement clos si et seulement si tout polynôme unitaire irréductible de A[X] reste irréductible dans K[X]. * Un anneau de Dedekind est intégralement clos (par définition). * En fait, un anneau intègre est intégralement clos si et seulement si c'est une intersection d'anneaux de valuation pour son corps des fractions. (fr)
  • En algèbre commutative, un anneau intégralement clos est un anneau intègre A qui est sa propre clôture intégrale dans son corps des fractions, c'est-à-dire que, pour tout p et tout q non nul appartenant à A, si p/q est racine d'un polynôme unitaire à coefficients dans A alors p/q appartient à A. * Tout anneau intègre à PGCD est intégralement clos, ce qui est le cas de tout anneau factoriel et de tout anneau de Bézout, en particulier (à double titre) de tout anneau principal, donc de tout anneau euclidien comme l'anneau Z.Démonstration Soit A un anneau intègre à PGCD. Soit un polynôme unitaire (c'est-à-dire que ) à coefficients dans A et x un élément du corps des fractions de A. Cet élément x peut s'écrire p/q, où p et q sont des éléments de A premiers entre eux. Si x est une racine de P alors puis en multipliant par Puisque, pour tout i < n, q divise , on en déduit que q divise aussi . Or q et p sont premiers entre eux ; d'après le lemme de Gauss, q doit alors diviser 1, autrement dit q est inversible dans A, donc l'élément x = p/q appartient à A. * Plus généralement, un anneau intègre A, de corps des fractions K, est intégralement clos si et seulement si tout polynôme unitaire irréductible de A[X] reste irréductible dans K[X]. * Un anneau de Dedekind est intégralement clos (par définition). * En fait, un anneau intègre est intégralement clos si et seulement si c'est une intersection d'anneaux de valuation pour son corps des fractions. (fr)
dbo:isPartOf
dbo:wikiPageID
  • 5295694 (xsd:integer)
dbo:wikiPageLength
  • 2013 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 176065352 (xsd:integer)
dbo:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • En algèbre commutative, un anneau intégralement clos est un anneau intègre A qui est sa propre clôture intégrale dans son corps des fractions, c'est-à-dire que, pour tout p et tout q non nul appartenant à A, si p/q est racine d'un polynôme unitaire à coefficients dans A alors p/q appartient à A. * Tout anneau intègre à PGCD est intégralement clos, ce qui est le cas de tout anneau factoriel et de tout anneau de Bézout, en particulier (à double titre) de tout anneau principal, donc de tout anneau euclidien comme l'anneau Z.Démonstration Soit A un anneau intègre à PGCD. puis en multipliant par (fr)
  • En algèbre commutative, un anneau intégralement clos est un anneau intègre A qui est sa propre clôture intégrale dans son corps des fractions, c'est-à-dire que, pour tout p et tout q non nul appartenant à A, si p/q est racine d'un polynôme unitaire à coefficients dans A alors p/q appartient à A. * Tout anneau intègre à PGCD est intégralement clos, ce qui est le cas de tout anneau factoriel et de tout anneau de Bézout, en particulier (à double titre) de tout anneau principal, donc de tout anneau euclidien comme l'anneau Z.Démonstration Soit A un anneau intègre à PGCD. puis en multipliant par (fr)
rdfs:label
  • Anneau intégralement clos (fr)
  • Integrally closed domain (en)
  • Normalität (kommutative Algebra) (de)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is oa:hasTarget of
is foaf:primaryTopic of