In mathematics, the Stieltjes transformation Sρ(z) of a measure of density ρ on a real interval I is the function of the complex variable z defined outside I by the formulaUnder certain conditions we can reconstitute the density function ρ starting from its Stieltjes transformation thanks to the inverse formula of Stieltjes-Perron. For example, if the density ρ is continuous throughout I, one will have inside this interval

PropertyValue
dbpedia-owl:abstract
  • In mathematics, the Stieltjes transformation Sρ(z) of a measure of density ρ on a real interval I is the function of the complex variable z defined outside I by the formulaUnder certain conditions we can reconstitute the density function ρ starting from its Stieltjes transformation thanks to the inverse formula of Stieltjes-Perron. For example, if the density ρ is continuous throughout I, one will have inside this interval
dbpedia-owl:wikiPageExternalLink
dbpedia-owl:wikiPageID
  • 1606346 (xsd:integer)
dbpedia-owl:wikiPageLength
  • 4424 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 29 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 102128269 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
prop-fr:année
  • 1948 (xsd:integer)
prop-fr:first
  • Irene
  • D. V.
prop-fr:lang
  • en
prop-fr:lienAuteur
  • David Widder
prop-fr:lienPériodique
  • Transactions of the American Mathematical Society
  • Liste des journaux scientifiques en mathématiques#M
prop-fr:nom
  • Widder
  • Gargantini
prop-fr:p.
  • 7 (xsd:integer)
  • 18 (xsd:integer)
prop-fr:revue
  • Trans. Amer. Math. Soc.
  • Math. Comp.
prop-fr:titre
  • Analytic Theory of Continued Fractions
  • The Stieltjes transform
  • A continued fraction algorithm for the computation of higher transcendental functions in the complex plane
prop-fr:url
prop-fr:vol
  • 21 (xsd:integer)
  • 43 (xsd:integer)
prop-fr:wikiPageUsesTemplate
prop-fr:year
  • 1938 (xsd:integer)
  • 1967 (xsd:integer)
prop-fr:éditeur
  • Van Nostrand
dcterms:subject
rdfs:comment
  • In mathematics, the Stieltjes transformation Sρ(z) of a measure of density ρ on a real interval I is the function of the complex variable z defined outside I by the formulaUnder certain conditions we can reconstitute the density function ρ starting from its Stieltjes transformation thanks to the inverse formula of Stieltjes-Perron. For example, if the density ρ is continuous throughout I, one will have inside this interval
rdfs:label
  • Transformée de Stieltjes
  • Stieltjes transformation
  • Преобразование Стилтьеса
owl:sameAs
http://www.w3.org/ns/prov#wasDerivedFrom
foaf:isPrimaryTopicOf
is dbpedia-owl:wikiPageRedirects of
is dbpedia-owl:wikiPageWikiLink of
is foaf:primaryTopic of