La topologie algébrique, anciennement appelée topologie combinatoire, est une branche des mathématiques appliquant les outils de l'algèbre dans l'étude des espaces topologiques. Plus exactement, elle cherche à associer de manière naturelle des invariants algébriques aux structures topologiques associées. La naturalité signifie que ces invariants vérifient des propriétés de fonctorialité au sens de la théorie des catégories.

PropertyValue
dbpedia-owl:abstract
  • La topologie algébrique, anciennement appelée topologie combinatoire, est une branche des mathématiques appliquant les outils de l'algèbre dans l'étude des espaces topologiques. Plus exactement, elle cherche à associer de manière naturelle des invariants algébriques aux structures topologiques associées. La naturalité signifie que ces invariants vérifient des propriétés de fonctorialité au sens de la théorie des catégories.
  • 代数的位相幾何学(だいすうてきいそうきかがく、英語:algebraic topology、代数的トポロジー)は代数的手法を用いる位相幾何学の分野のことをいう。古典的な位相幾何学は、図形として取り扱い易い多面体を扱っていたが、1900年前後のポワンカレの一連の研究を契機として20世紀に発展した。ポワンカレは 1895年に出版した "Analysis Situs" の中で、ホモトピーおよびホモロジーの概念を導入した。これらはいまや代数的位相幾何学の大きな柱であると考えられている。多様体、基本群、ホモトピー、ホモロジー、コホモロジー、ファイバー束などの、位相空間の不変量として代数系を対応させ、位相的性質を代数的性質に移して研究する. セル複体(胞体複体) 単体的複体 CW複体 多様体 閉曲面↑
  • 대수적 위상수학(代數的位相數學, 영어: algebraic topology)은 추상대수학적 도구를 사용하여 위상공간과 다양체들을 다루는 위상수학의 분야다.
  • La topologia algebrica è una branca della matematica che applica gli strumenti dell'algebra astratta per studiare gli spazi topologici.
  • Алгебраи́ческая тополо́гия (устаревшее название: комбинаторная топология) — раздел топологии, изучающий топологические пространства путём сопоставления им алгебраических объектов (групп, колец и т. д.), а также поведение этих объектов под действием различных топологических операций.
  • Алгебрична топология (или комбинаторна топология) е дял от математиката, който използва средства от алгебрата за изследване на топологични пространства. За основна цел на алгебричната топология може да се приеме намирането на алгебрични инварианти, които да класифицират топологичните пространства с точност до хомеоморфизъм. Тъй като тази цел в много от случаите е твърде амбициозна, по-достижимата цел е класификацията да се стигне до хомотопна еквивалентност.Основен метод в алгебричната топология е изследването на пространства чрез търсене на подходящи изображения на алгебричните инварианти в групи, като по този начин твърденията се преформулират в съответни твърдения за групи, и тяхното доказване, в много от случаите, става по-лесно. Ползват се фундаментални групи, или хомотопна теория, и хомологии и кохомологии. Фундаменталните групи дават важна информация за структурата на топологичното пространство, но в повечето случаи са неабелеви, което е наложило въвеждането на групите от хомологии и кохомологии, които са абелеви и често крайно породени. Крайно породените абелеви групи са напълно класифицирани и лесни за манипулиране.За основополагащи трудове се приемат тези на Анри Поанкаре от края на 19 век. Именно той въвежда понятията фундаментална група и симплициална хомология. Топологични изследвания са открити още у Леонард Ойлер през 18 век, и след това у Карл Фридрих Гаус и Бернхард Риман от края на 18 до средата на 19 век.Бележити алгебрични тополози са:
  • Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classify up to homotopy equivalence.Although algebraic topology primarily uses algebra to study topological problems, using topology to solve algebraic problems is sometimes also possible. Algebraic topology, for example, allows for a convenient proof that any subgroup of a free group is again a free group.
  • Die algebraische Topologie ist ein Teilgebiet der Mathematik, das topologische Räume (oder auch Lagebeziehungen im Raum wie zum Beispiel in der Knotentheorie) mit Hilfe von algebraischen Strukturen untersucht. Sie ist eine Teildisziplin der Topologie.Die Grundidee besteht darin, gewissen topologischen Räumen, zum Beispiel Teilmengen des Anschauungsraums wie Kugeln, Tori oder deren Oberflächen, gewisse algebraische Strukturen wie zum Beispiel Gruppen oder Vektorräume zuzuordnen, und das auf eine Weise, dass verwickelte Verhältnisse auf Seiten der topologischen Räume sich vereinfacht auf Seiten der algebraischen Strukturen wiederfinden und so einer Behandlung zugänglich werden.
  • Ramo da Matemática que faz a ligação entre a Topologia e a Álgebra.Baseia-se na associação de estruturas algébricas a um espaço topológico com o objectivo de obter informações sobre esse espaço. Os exemplos básicos são os grupos de homologia e os grupos de homotopia, entre os quais se encontra o grupo fundamental.Embora a topologia algébrica utiliza use a álgebra para estudar os problemas de topologia, a recíproca, usar a topologia para resolver problemas de álgebra, é por vezes também possível. A topologia algébrica, por exemplo, permite uma demonstração conveniente de que qualquer subgrupo de um grupo livre é também um grupo livre.== Referências == .
  • Algebraická topologie je matematická věda, která využívá prostředky abstraktní algebry k studiu topologických prostorů. Součástí je popis homotopických invariantů topologických prostorů a jejich klasifikace.
  • Cebirsel topoloji, topolojik uzayları cebirsel gereç ve yöntemlerle inceleyen matematik dalı. Matematikte bir kümenin üzerine döşenecek yapı, yönelinen matematik dalını belirler. Bir kümeye bir ya da birkaç işlem konarak sayılar kuramı ya da cebir yapmaya başlanabilir. Kümenin üzerine bir topoloji koyaraksa topoloji ve, ayrıca uzunluk koyarsak, geometri yapmaya başlanır. Üzerine topoloji konmuş bir uzayı (örneğin herhangi boyutlu bir Öklit uzayı) incelemek için kimi cebirsel, aritmetik veya topolojik değişmezler tanımlanır; bunlar aracılığıyla topolojik uzayın özellikleri ayırdedilir. Örneğin tıkızlık, bağlantılılık, sayılabilirlik bu tür değişmezlerdir. Topolojik eşyapısal (birbirlerine homeomorfik) iki uzaydan biri bu değişmeze sahipse diğeri de buna sahip olmalıdır. Yani, eğer iki uzay için ayrı ayrı bakılan bir değişmez aynı değilse, bu iki uzay eşyapısal olmayacaktır. Yukarıda anılan en eski değişmezlerin hemen ardından inşa edilen klasik değişmezler cebirsel olanlardır.
  • Topologia algebraiczna – dział matematyki, który zajmuje się badaniem przestrzeni topologicznych przy użyciu metod o charakterze algebraicznym.Zazwyczaj polega ono na tym, że przestrzeniom topologicznym przyporządkowuje się pewne obiekty algebraiczne (przykładem takiego obiektu może być tzw. grupa podstawowa przestrzeni topologicznej). Przyporządkowanie takie powinno spełniać określone warunki, na przykład taki, że obiekty przyporządkowane przestrzeniom homeomorficznym (czyli izomorficznym w sensie topologicznym) są izomorficzne w sensie algebraicznym. W wielu teoriach dowodzi się ogóloniejszego twierdzenia o tym, że przyporządkowane obiekty algebraiczne są izomorficzne już dla przestrzeni topologicznych równoważnych homotopijnie. Homeomorfizm jest izomorfizmem w kategorii przestrzeni topologicznych, homotopijna równoważność w kategorii homotopijnej.Następnie bada się uzyskane struktury algebraiczne i na tej podstawie wyciąga wnioski dotyczące własności wyjściowych przestrzeni topologicznych. Wykorzystuje się w tym celu między innymi przekształcenia pomiędzy kategorią przestrzeni topologicznych i kategorią struktur algebraicznych określonego rodzaju, które określa się mianem funktorów. Te ostatnie stanowią jedno z podstawowych pojęć teorii kategorii, która - podobnie jak algebra homologiczna - właśnie w topologii algebraicznej znajduje najliczniejsze zastosowania.
  • La Topología algebraica es una rama de la matemática en la que se usan las herramientas del Álgebra abstracta para estudiar los espacios topológicos.
  • In de wiskunde vormt de algebraïsche topologie een onderdeel van de topologie. Hierbij worden er technieken uit de algebra gebruikt om topologische problemen aan te pakken. Maar omgekeerd kunnen topologische technieken soms worden gebruikt om resultaten uit de algebra te bewijzen.
  • La topologia algebraica és el camp de les matemàtiques que usa estructures algebraiques per estudiar transformacions d'objectes geomètrics. Usa funcions (sovint anomenades aplicacions en aquest context) per representar transformacions contínues. Considerades en conjunt, les aplicacions i els objectes poden tenir una estructura de grup algebraic, que es pot estudiar amb mètodes de la teoria de grups.
dbpedia-owl:wikiPageID
  • 22170 (xsd:integer)
dbpedia-owl:wikiPageLength
  • 4724 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 74 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 107045583 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • La topologie algébrique, anciennement appelée topologie combinatoire, est une branche des mathématiques appliquant les outils de l'algèbre dans l'étude des espaces topologiques. Plus exactement, elle cherche à associer de manière naturelle des invariants algébriques aux structures topologiques associées. La naturalité signifie que ces invariants vérifient des propriétés de fonctorialité au sens de la théorie des catégories.
  • 代数的位相幾何学(だいすうてきいそうきかがく、英語:algebraic topology、代数的トポロジー)は代数的手法を用いる位相幾何学の分野のことをいう。古典的な位相幾何学は、図形として取り扱い易い多面体を扱っていたが、1900年前後のポワンカレの一連の研究を契機として20世紀に発展した。ポワンカレは 1895年に出版した "Analysis Situs" の中で、ホモトピーおよびホモロジーの概念を導入した。これらはいまや代数的位相幾何学の大きな柱であると考えられている。多様体、基本群、ホモトピー、ホモロジー、コホモロジー、ファイバー束などの、位相空間の不変量として代数系を対応させ、位相的性質を代数的性質に移して研究する. セル複体(胞体複体) 単体的複体 CW複体 多様体 閉曲面↑
  • 대수적 위상수학(代數的位相數學, 영어: algebraic topology)은 추상대수학적 도구를 사용하여 위상공간과 다양체들을 다루는 위상수학의 분야다.
  • La topologia algebrica è una branca della matematica che applica gli strumenti dell'algebra astratta per studiare gli spazi topologici.
  • Алгебраи́ческая тополо́гия (устаревшее название: комбинаторная топология) — раздел топологии, изучающий топологические пространства путём сопоставления им алгебраических объектов (групп, колец и т. д.), а также поведение этих объектов под действием различных топологических операций.
  • Algebraická topologie je matematická věda, která využívá prostředky abstraktní algebry k studiu topologických prostorů. Součástí je popis homotopických invariantů topologických prostorů a jejich klasifikace.
  • La Topología algebraica es una rama de la matemática en la que se usan las herramientas del Álgebra abstracta para estudiar los espacios topológicos.
  • In de wiskunde vormt de algebraïsche topologie een onderdeel van de topologie. Hierbij worden er technieken uit de algebra gebruikt om topologische problemen aan te pakken. Maar omgekeerd kunnen topologische technieken soms worden gebruikt om resultaten uit de algebra te bewijzen.
  • La topologia algebraica és el camp de les matemàtiques que usa estructures algebraiques per estudiar transformacions d'objectes geomètrics. Usa funcions (sovint anomenades aplicacions en aquest context) per representar transformacions contínues. Considerades en conjunt, les aplicacions i els objectes poden tenir una estructura de grup algebraic, que es pot estudiar amb mètodes de la teoria de grups.
  • Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classify up to homotopy equivalence.Although algebraic topology primarily uses algebra to study topological problems, using topology to solve algebraic problems is sometimes also possible.
  • Алгебрична топология (или комбинаторна топология) е дял от математиката, който използва средства от алгебрата за изследване на топологични пространства. За основна цел на алгебричната топология може да се приеме намирането на алгебрични инварианти, които да класифицират топологичните пространства с точност до хомеоморфизъм.
  • Ramo da Matemática que faz a ligação entre a Topologia e a Álgebra.Baseia-se na associação de estruturas algébricas a um espaço topológico com o objectivo de obter informações sobre esse espaço.
  • Topologia algebraiczna – dział matematyki, który zajmuje się badaniem przestrzeni topologicznych przy użyciu metod o charakterze algebraicznym.Zazwyczaj polega ono na tym, że przestrzeniom topologicznym przyporządkowuje się pewne obiekty algebraiczne (przykładem takiego obiektu może być tzw. grupa podstawowa przestrzeni topologicznej).
  • Cebirsel topoloji, topolojik uzayları cebirsel gereç ve yöntemlerle inceleyen matematik dalı. Matematikte bir kümenin üzerine döşenecek yapı, yönelinen matematik dalını belirler. Bir kümeye bir ya da birkaç işlem konarak sayılar kuramı ya da cebir yapmaya başlanabilir. Kümenin üzerine bir topoloji koyaraksa topoloji ve, ayrıca uzunluk koyarsak, geometri yapmaya başlanır.
  • Die algebraische Topologie ist ein Teilgebiet der Mathematik, das topologische Räume (oder auch Lagebeziehungen im Raum wie zum Beispiel in der Knotentheorie) mit Hilfe von algebraischen Strukturen untersucht.
rdfs:label
  • Topologie algébrique
  • Algebraic topology
  • Algebraická topologie
  • Algebraische Topologie
  • Algebraïsche topologie
  • Cebirsel topoloji
  • Topologia algebraica
  • Topologia algebraiczna
  • Topologia algebrica
  • Topologia algébrica
  • Topología algebraica
  • Алгебраическая топология
  • Алгебрична топология
  • 代数的位相幾何学
  • 대수적 위상수학
owl:sameAs
http://www.w3.org/ns/prov#wasDerivedFrom
foaf:isPrimaryTopicOf
is dbpedia-owl:domain of
is dbpedia-owl:wikiPageDisambiguates of
is dbpedia-owl:wikiPageWikiLink of
is prop-fr:champs of
is foaf:primaryTopic of