La théorie des ensembles est une branche des mathématiques, créée par le mathématicien allemand Georg Cantor à la fin du XIXe siècle.La théorie des ensembles se donne comme primitives les notions d'ensemble et d'appartenance, à partir desquelles elle reconstruit les objets usuels des mathématiques : fonctions, relations, entiers naturels, relatifs, rationnels, nombres réels, complexes… C'est pourquoi la théorie des ensembles est considérée comme une théorie fondamentale dont Hilbert a pu dire qu'elle était un « paradis » créé par Cantor pour les mathématiciens.En plus de proposer un fondement aux mathématiques, Cantor introduisait avec la théorie des ensembles des concepts radicalement nouveaux, et notamment l'idée qu'il existe plusieurs types d'infini que l'on peut mesurer et comparer au moyen de nouveaux nombres (ordinaux et cardinaux).À cause de sa modernité, la théorie des ensembles fut âprement controversée, notamment parce qu'elle postulait l'existence d'ensembles infinis, en contradiction avec certains principes des mathématiques constructives ou intuitionnistes.

PropertyValue
dbpedia-owl:abstract
  • La théorie des ensembles est une branche des mathématiques, créée par le mathématicien allemand Georg Cantor à la fin du XIXe siècle.La théorie des ensembles se donne comme primitives les notions d'ensemble et d'appartenance, à partir desquelles elle reconstruit les objets usuels des mathématiques : fonctions, relations, entiers naturels, relatifs, rationnels, nombres réels, complexes… C'est pourquoi la théorie des ensembles est considérée comme une théorie fondamentale dont Hilbert a pu dire qu'elle était un « paradis » créé par Cantor pour les mathématiciens.En plus de proposer un fondement aux mathématiques, Cantor introduisait avec la théorie des ensembles des concepts radicalement nouveaux, et notamment l'idée qu'il existe plusieurs types d'infini que l'on peut mesurer et comparer au moyen de nouveaux nombres (ordinaux et cardinaux).À cause de sa modernité, la théorie des ensembles fut âprement controversée, notamment parce qu'elle postulait l'existence d'ensembles infinis, en contradiction avec certains principes des mathématiques constructives ou intuitionnistes. Au début du XXe siècle, plusieurs facteurs ont poussé les mathématiciens à développer une axiomatique pour la théorie des ensembles : la découverte de paradoxes tels que le paradoxe de Russell, mais surtout le questionnement autour de l'hypothèse du continu qui nécessitait une définition précise de la notion d'ensemble. Cette approche formelle conduisit à plusieurs systèmes axiomatiques, le plus connu étant les axiomes de ZF, mais également la théorie des classes de von Neumann ou la théorie des types de Russell.
  • 集合論(しゅうごうろん、ドイツ語: mengenlehre、英語: set theory)は、集合とよばれる数学的対象をあつかう数学理論である。
  • Teorie množin je matematická teorie, která se zabývá studiem množin. Množina je buď souhrn nějakých prvků (přičemž nezáleží na jejich pořadí), anebo nějaká matematická formalizace tohoto konceptu.Teorie množin, která vychází z intuice a zachází s množinami jako se soubory nějakých objektů, se nazývá naivní teorie množin. Kromě ní existují axiomatické teorie množin, které přesně formulují vlastnosti množin několika axiomy a z nich (bez využití intuice či dalších předpokladů) odvozují další vlastnosti množin pomocí matematické logiky. Ve většině těchto teorií je možné zkonstruovat všechny běžně používané matematické objekty (tj. reálná čísla, funkce, uspořádané dvojice atd.) jako množiny.
  • La teoria degli insiemi svolge un ruolo importante per i fondamenti della matematica e si colloca nell'ambito della logica matematica. Prima della metà del sec. XIX la nozione di insieme veniva considerata solo come qualcosa di intuitivo e generico. Essa è stata inizialmente sviluppata nella seconda metà del XIX secolo dal matematico tedesco Georg Cantor, è stata al centro dei dibattiti sui fondamenti dal 1890 al 1930 ed ha ricevuto le prime sistemazioni assiomatiche per merito di Ernst Zermelo, Adolf Fraenkel, Paul Bernays, Kurt Gödel, John von Neumann e Thoralf Skolem, e le convenzioni linguistico-formali col contributo di Gottlob Frege (quantificatore universale ed esistenziale) e Giuseppe Peano (notazione e sintassi). In questo periodo si sono assestati due sistemi di assiomi chiamati rispettivamente sistema assiomatico di Zermelo-Fraenkel e sistema assiomatico di Von Neumann-Bernays-Gödel.Successivamente si sono affrontate le tematiche riguardanti il problema della completezza dei sistemi di assiomi (v. teorema di incompletezza di Gödel), i rapporti con la teoria della calcolabilità (v.a. macchina di Turing) e la compatibilità dei sistemi di assiomi con l'assioma della scelta e con assiomi equivalenti o simili.Accanto a differenti consolidate teorie formali degli insiemi (vedi anche teoria assiomatica degli insiemi) esistono esposizioni più intuitive che costituiscono la cosiddetta teoria naïve degli insiemi. Elenchiamo le entità principali della teoria degli insiemi.
  • Kümeler kuramı veya küme teorisi, matematiğin nesne grupları olan kümeleri inceleyen dalıdır. Herhangi bir nesne türü bir küme içine alınabilse de küme kuramı en çok matematik ile ilgili olan nesnelere uygulanır. Küme kuramının dili, neredeyse tüm matematiksel nesnelerin tanımlarında kullanılabilir. Alman matematikçi Georg Cantor tarafından 1874 ile 1895 yılları arasında geliştirilen, 20. yüzyıl matematiğinin temelini oluşturan kuramdır. Varlıkların "küme" denen topluluklar halinde belirtilmesi çok eski bir işlem olsa da, küme uygulamasının kuram haline getirilmesi 19. yüzyılın sonlarında gerçekleşmiştir. Bu kurama göre, kime "yaşlı" deneceği belirsiz olduğu için "yaşlı insanlar kümesi" diye bir küme olamaz. Çünkü yaşlılık kavramı farklı kişilerin zihinlerinde farklı çağrışımlar yaratmaktadır ve belirli bir kriteri bulunmamaktadır; ancak "59 yaşın üstündeki insanlar kümesi" kurulabilir, çünkü bu kümenin kimleri kapsayacağı bellidir ve nesnel bir kriter taşımaktadır.
  • La teoria de conjunts és la branca de les matemàtiques que estudia els conjunts. El primer estudi formal sobre el tema va ser realitzat pel matemàtic alemany Georg Cantor el segle XIX.
  • A halmazelmélet - a matematikai logikával együtt - a matematika legalapvetőbb tudományága, mely a halmaz fogalmát tanulmányozza. A matematikán belül kettős szerepe van. Mint önálló tudomány, elsősorban a végtelen sok elemű matematikai összességek mennyiségi viszonyaival foglalkozik (számosságaritmetika), ti. hogy hogyan lehet a véges (egész) számokra megszokott aritmetikai és algebrai törvényeket a végtelen számosságokra átvinni, illetve utóbbiak körében milyen új törvényszerűségek érvényesülnek; ezzel összefüggésben azonban a matematikai logikai és struktúraelméleti (pl. topológiai) módszerekhez hasonlatos eszközökkel, a végtelen halmazok elméletének matematikai megalapozására irányuló vizsgálatokat is folytat.Mint (egy bizonyos értelemben) alkalmazott tudomány, a halmazelmélet felhasználható gyakorlatilag a teljes matematika megalapozására. Ez mutatja a halmazelmélet alapvető jelentőségét (lásd még: matematikafilozófia).A halmazelmélet megalkotója Georg Cantor német matematikus, aki a végtelen halmazokra és a halmazok számosságaira vonatkozó úttörő kutatásaival nemcsak a halmazelméletet indította útjára, hanem gyökeresen megváltoztatta a matematika egész arculatát. Elmélete, az utóbb ellentmondásosnak bizonyult naiv halmazelmélet, megreformálásra szorult ugyan, de alapkoncepciói beépültek a matematika minden szegletébe. A 20. század elején Ernst Zermelo, Abraham Fraenkel, Neumann János és Kurt Gödel munkássága révén sikerült axiomatikus alapokra hozni a halmazelméletet (lásd még: axiomatikus halmazelmélet). A halmazelmélet elterjedésében nem kis szerepe volt az ún. Bourbaki-csoportnak, valamint egyes középiskolai reformoknak.
  • Тео́рия мно́жеств — раздел математики, в котором изучаются общие свойства множеств — совокупностей элементов произвольной природы, обладающих каким-либо общим свойством. Создана во второй половине XIX века Георгом Кантором при значительном участии Рихарда Дедекинда, привнесла в математику новое понимание природы бесконечности, была обнаружена глубокая связь теории с формальной логикой, однако уже в конце XIX — начале XX века теория столкнулась со значительными сложностями в виде возникающих парадоксов[⇨] из-за поверхностности абстракции множества, поэтому изначальная форма теории известна как наивная теория множеств[⇨]. В XX веке теория получила существенное методологическое развитие, были созданы несколько вариантов аксиоматической теории множеств[⇨], обеспечивающие универсальный математический инструментарий, в связи с вопросами измеримости множеств тщательно разработана дескриптивная теория множеств[⇨].Теория множеств стала основой многих разделов математики — общей топологии, общей алгебры, функционального анализа и оказала существенное влияние на современное понимание предмета математики. В первой половине XX века теоретико-множественный подход был привнесён и во многие традиционные разделы математики, в связи с чем стала широко использоваться в преподавании математики, в том числе в школах.Начиная со второй половины XX века представление о значении теории и её влияние на развитие математики заметно снизились за счёт осознания возможности получения достаточно общих результатов во многих областях математики и без явного использования её аппарата, в частности, с использованием теоретико-категорного инструментария (средствами которого в теории топосов обобщены практически все варианты теории множеств). Тем не менее, нотация теории множеств стала общепринятой во всех разделах математики вне зависимости от использования теоретико-множественного подхода. На идейной основе теории множеств в конце XX века создано несколько обобщений[⇨], в том числе теория нечётких множеств, теория мультимножеств (используемые в основном в приложениях), теория полумножеств (развиваемая в основном чешскими математиками).Ключевые понятия теории[⇨]: множество (совокупность объектов произвольной природы), отношение принадлежности элементов множествам, подмножество, операции над множествами, отображение множеств, взаимно-однозначное соответствие, мощность (конечная, счётная, несчётная) трансфинитная индукция.
  • Die Mengenlehre ist das grundlegende Teilgebiet der Mathematik. Die gesamte Mathematik, wie sie heute üblicherweise gelehrt wird, ist in der Sprache der Mengenlehre formuliert und baut auf den Axiomen der Mengenlehre auf. Die meisten mathematischen Objekte, die in Teilbereichen wie Algebra, Analysis, Geometrie, Stochastik oder Topologie behandelt werden, um nur einige wenige zu nennen, lassen sich als Mengen definieren. Gemessen daran ist die Mengenlehre eine recht junge Wissenschaft; erst nach der Überwindung der Grundlagenkrise der Mathematik zu Beginn des 20. Jahrhunderts konnte die Mengenlehre ihren heutigen, zentralen und grundlegenden Platz in der Mathematik einnehmen.
  • Teoria mnogości lub inaczej: teoria zbiorów – dział matematyki, a zarazem logiki matematycznej zapoczątkowany przez niemieckiego matematyka Georga Cantora pod koniec XIX wieku. Teoria początkowo wzbudzała wiele kontrowersji, jednak wraz z postępem matematyki zaczęła ona pełnić rolę fundamentu, na którym opiera się większość matematycznych rozważań.Na przestrzeni lat język i metody teorii mnogości przeniknęły do wielu innych działów matematyki (na przykład w algebrze rozważa się obiekty teoriomnogościowe zwane ultrafiltrami). Teoria mnogości rozwijana jest także jako samodzielna dyscyplina.
  • La teoría de conjuntos es una rama de las matemáticas que estudia las propiedades de los conjuntos: colecciones abstractas de objetos, consideradas como objetos en sí mismas. Los conjuntos y sus operaciones más elementales son una herramienta básica en la formulación de cualquier teoría matemática.Sin embargo, la teoría de los conjuntos es lo suficientemente rica como para construir el resto de objetos y estructuras de interés en matemáticas: números, funciones, figuras geométricas, ...; y junto con la lógica permite estudiar los fundamentos de esta. En la actualidad se acepta que el conjunto de axiomas de la teoría de Zermelo-Fraenkel es suficiente para desarrollar toda la matemática. Además, la propia teoría de conjuntos es objeto de estudio per se, no sólo como herramienta auxiliar, en particular las propiedades y relaciones de los conjuntos infinitos. En esta disciplina es habitual que se presenten casos de propiedades indemostrables o contradictorias, como la hipótesis del continuo o la existencia de un cardinal inaccesible. Por esta razón, sus razonamientos y técnicas se apoyan en gran medida en la lógica matemática.El desarrollo histórico de la teoría de conjuntos se atribuye a Georg Cantor, que comenzó a investigar cuestiones conjuntistas «puras» del infinito en la segunda mitad del siglo XIX, precedido por algunas ideas de Bernhard Bolzano e influenciado por Richard Dedekind. El descubrimiento de las paradojas de la teoría cantoriana, de conjuntos, formalizada por Gottlob Frege, propició los trabajos de Bertrand Russell, Ernst Zermelo, Abraham Fraenkel y otros a principios del siglo XX.
  • Set theory is the branch of mathematical logic that studies sets, which are collections of objects. Although any type of object can be collected into a set, set theory is applied most often to objects that are relevant to mathematics. The language of set theory can be used in the definitions of nearly all mathematical objects.The modern study of set theory was initiated by Georg Cantor and Richard Dedekind in the 1870s. After the discovery of paradoxes in naive set theory, numerous axiom systems were proposed in the early twentieth century, of which the Zermelo–Fraenkel axioms, with the axiom of choice, are the best-known.Set theory is commonly employed as a foundational system for mathematics, particularly in the form of Zermelo–Fraenkel set theory with the axiom of choice. Beyond its foundational role, set theory is a branch of mathematics in its own right, with an active research community. Contemporary research into set theory includes a diverse collection of topics, ranging from the structure of the real number line to the study of the consistency of large cardinals.
  • Теория на множествата е дял от математиката, която изучава множествата, като съвкупност от обекти. Въпреки, че всякакъв вид обект може да бъде поместено в множество, теорията на множествата се прилага най-често за обекти, които са свързани с математиката. Термините от теорията на множествата може да се използват в определенията на почти всички математически обекти.Съвременното обучение по теория на множествата е инициирано от Георг Кантор и Рихард Дедекинд през 1870 година. След откриването на парадокси в наивната теория на множествата, в началото на ХХ век са предложени множество аксиоматични системи, от които най-познатите са аксиомите на Цермело-Френкел, като например аксиомата за избора.Концепциите на теорията на множествата, са интегрирани в цялата учебна програма по математика в САЩ. Елементарни факти за множества и принадлежност към множества често се преподават в начално училище, заедно с диаграмите на Вен, диаграми на Ойлер и елементарните операции като обединение и сечение на множества. Малко по-напреднали концепции като мощност са стандартна част от учебната програма по математика на студенти.Теорията на множествата обикновено се използва като основополагаща система в математика, особено под формата на аксиоматика на Цермело-Френкел с аксиомата за избора. Извън основополагаща роля, теорията на множествата сама по себе си е дял на математиката, с активна изследователска общност. Съвременните изследвания свързани с теорията на множествата включва разнообразна съвкупност от теми, вариращи от структурата на реалните числови редици, до проучване на непротиворечивост на големи кардинали.
  • Teori Himpunan adalah teori mengenai kumpulan objek-objek abstrak. Teori himpunan biasanya dipelajari sebagai salah satu bentuk: Teori himpunan naif, dan Teori himpunan aksiomatik, yang mendasarkan teori himpunan pada istilah-istilah dan relasi yang tak terdefinisikan, serta aksioma-aksioma yang nantinya akan membangun keseluruhan teori himpunan.
  • 집합론(集合論, set theory)은 추상적 대상들의 모임인 집합을 연구하는 수학 이론이다. 집합론은 술어논리학과 함께 대부분의 수학기초론 체계의 근본으로, 현대 수학을 논리적으로 지탱하는 밑바탕이 된다.소박한 집합론(naive set theory)에서는 집합을 단순히 대상들을 모아서 만들어지는 자명한 개념으로 이해한다. 초등학교 및 중학교 등의 교육과정에서 다루는 집합의 개념은 이에 해당한다.소박한 집합론의 모순을 해결하기 위해 등장한 공리적 집합론은 집합들과 그 포함관계가 만족하는 공리들을 규정하는 방법으로 집합을 간접적으로 정의한다. 여기에서 집합과 그 포함관계는 유클리드 기하에서의 점이나 선과 같은 무정의 용어로 볼 수 있다. 공리적 집합론은 대부분의 경우 대학에서 수학을 전공하지 않는 이상 배우지 않는다.
  • De verzamelingenleer vormt sinds het begin van de twintigste eeuw een van de grondslagen van de wiskunde. De verzamelingenleer betreft de bestudering en formalisering van het begrip verzameling, en ondersteunt daarmee de axiomatische onderbouwing van andere deelgebieden van de wiskunde.
dbpedia-owl:wikiPageExternalLink
dbpedia-owl:wikiPageID
  • 3288332 (xsd:integer)
dbpedia-owl:wikiPageLength
  • 27430 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 128 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 109888845 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
prop-fr:année
  • 2000 (xsd:integer)
  • 2006 (xsd:integer)
prop-fr:auteur
  • Yannis Delmas-Rigoutsos et René Lalement
prop-fr:commons
  • Set theory
prop-fr:fr
  • Finitisme
  • Théorie des ensembles de Tarski-Grothendieck
prop-fr:isbn
  • 978 (xsd:integer)
  • 2746500353 (xsd:double)
prop-fr:lang
  • en
prop-fr:langue
  • français
prop-fr:lienAuteur
  • Thomas Jech
prop-fr:lienÉditeur
  • Springer Verlag
prop-fr:lieu
  • Paris
prop-fr:nom
  • Jech
prop-fr:numéroD'édition
  • 3 (xsd:integer)
prop-fr:prénom
  • Thomas
prop-fr:ref
  • Référence:La Logique ou l'art de raisonner
prop-fr:texte
  • finitiste
prop-fr:titre
  • La Logique ou l'art de raisonner
  • Set Theory: The Third Millennium Edition, Revised and Expanded
prop-fr:trad
  • Finitism
  • Tarski–Grothendieck set theory
prop-fr:url
prop-fr:wikiPageUsesTemplate
prop-fr:wikiversity
  • Axiomes des théories des ensembles
prop-fr:wikiversityTitre
  • Axiomes des théories des ensembles
  • Axiomes des théories des ensembles
prop-fr:éditeur
  • Springer
  • Le Pommier
dcterms:subject
rdfs:comment
  • La théorie des ensembles est une branche des mathématiques, créée par le mathématicien allemand Georg Cantor à la fin du XIXe siècle.La théorie des ensembles se donne comme primitives les notions d'ensemble et d'appartenance, à partir desquelles elle reconstruit les objets usuels des mathématiques : fonctions, relations, entiers naturels, relatifs, rationnels, nombres réels, complexes… C'est pourquoi la théorie des ensembles est considérée comme une théorie fondamentale dont Hilbert a pu dire qu'elle était un « paradis » créé par Cantor pour les mathématiciens.En plus de proposer un fondement aux mathématiques, Cantor introduisait avec la théorie des ensembles des concepts radicalement nouveaux, et notamment l'idée qu'il existe plusieurs types d'infini que l'on peut mesurer et comparer au moyen de nouveaux nombres (ordinaux et cardinaux).À cause de sa modernité, la théorie des ensembles fut âprement controversée, notamment parce qu'elle postulait l'existence d'ensembles infinis, en contradiction avec certains principes des mathématiques constructives ou intuitionnistes.
  • 集合論(しゅうごうろん、ドイツ語: mengenlehre、英語: set theory)は、集合とよばれる数学的対象をあつかう数学理論である。
  • La teoria de conjunts és la branca de les matemàtiques que estudia els conjunts. El primer estudi formal sobre el tema va ser realitzat pel matemàtic alemany Georg Cantor el segle XIX.
  • Teori Himpunan adalah teori mengenai kumpulan objek-objek abstrak. Teori himpunan biasanya dipelajari sebagai salah satu bentuk: Teori himpunan naif, dan Teori himpunan aksiomatik, yang mendasarkan teori himpunan pada istilah-istilah dan relasi yang tak terdefinisikan, serta aksioma-aksioma yang nantinya akan membangun keseluruhan teori himpunan.
  • 집합론(集合論, set theory)은 추상적 대상들의 모임인 집합을 연구하는 수학 이론이다. 집합론은 술어논리학과 함께 대부분의 수학기초론 체계의 근본으로, 현대 수학을 논리적으로 지탱하는 밑바탕이 된다.소박한 집합론(naive set theory)에서는 집합을 단순히 대상들을 모아서 만들어지는 자명한 개념으로 이해한다. 초등학교 및 중학교 등의 교육과정에서 다루는 집합의 개념은 이에 해당한다.소박한 집합론의 모순을 해결하기 위해 등장한 공리적 집합론은 집합들과 그 포함관계가 만족하는 공리들을 규정하는 방법으로 집합을 간접적으로 정의한다. 여기에서 집합과 그 포함관계는 유클리드 기하에서의 점이나 선과 같은 무정의 용어로 볼 수 있다. 공리적 집합론은 대부분의 경우 대학에서 수학을 전공하지 않는 이상 배우지 않는다.
  • De verzamelingenleer vormt sinds het begin van de twintigste eeuw een van de grondslagen van de wiskunde. De verzamelingenleer betreft de bestudering en formalisering van het begrip verzameling, en ondersteunt daarmee de axiomatische onderbouwing van andere deelgebieden van de wiskunde.
  • Set theory is the branch of mathematical logic that studies sets, which are collections of objects. Although any type of object can be collected into a set, set theory is applied most often to objects that are relevant to mathematics. The language of set theory can be used in the definitions of nearly all mathematical objects.The modern study of set theory was initiated by Georg Cantor and Richard Dedekind in the 1870s.
  • Die Mengenlehre ist das grundlegende Teilgebiet der Mathematik. Die gesamte Mathematik, wie sie heute üblicherweise gelehrt wird, ist in der Sprache der Mengenlehre formuliert und baut auf den Axiomen der Mengenlehre auf. Die meisten mathematischen Objekte, die in Teilbereichen wie Algebra, Analysis, Geometrie, Stochastik oder Topologie behandelt werden, um nur einige wenige zu nennen, lassen sich als Mengen definieren.
  • La teoria degli insiemi svolge un ruolo importante per i fondamenti della matematica e si colloca nell'ambito della logica matematica. Prima della metà del sec. XIX la nozione di insieme veniva considerata solo come qualcosa di intuitivo e generico.
  • Тео́рия мно́жеств — раздел математики, в котором изучаются общие свойства множеств — совокупностей элементов произвольной природы, обладающих каким-либо общим свойством.
  • A halmazelmélet - a matematikai logikával együtt - a matematika legalapvetőbb tudományága, mely a halmaz fogalmát tanulmányozza. A matematikán belül kettős szerepe van. Mint önálló tudomány, elsősorban a végtelen sok elemű matematikai összességek mennyiségi viszonyaival foglalkozik (számosságaritmetika), ti.
  • Teoria mnogości lub inaczej: teoria zbiorów – dział matematyki, a zarazem logiki matematycznej zapoczątkowany przez niemieckiego matematyka Georga Cantora pod koniec XIX wieku.
  • Теория на множествата е дял от математиката, която изучава множествата, като съвкупност от обекти. Въпреки, че всякакъв вид обект може да бъде поместено в множество, теорията на множествата се прилага най-често за обекти, които са свързани с математиката. Термините от теорията на множествата може да се използват в определенията на почти всички математически обекти.Съвременното обучение по теория на множествата е инициирано от Георг Кантор и Рихард Дедекинд през 1870 година.
  • Teorie množin je matematická teorie, která se zabývá studiem množin. Množina je buď souhrn nějakých prvků (přičemž nezáleží na jejich pořadí), anebo nějaká matematická formalizace tohoto konceptu.Teorie množin, která vychází z intuice a zachází s množinami jako se soubory nějakých objektů, se nazývá naivní teorie množin.
  • La teoría de conjuntos es una rama de las matemáticas que estudia las propiedades de los conjuntos: colecciones abstractas de objetos, consideradas como objetos en sí mismas.
  • Kümeler kuramı veya küme teorisi, matematiğin nesne grupları olan kümeleri inceleyen dalıdır. Herhangi bir nesne türü bir küme içine alınabilse de küme kuramı en çok matematik ile ilgili olan nesnelere uygulanır. Küme kuramının dili, neredeyse tüm matematiksel nesnelerin tanımlarında kullanılabilir. Alman matematikçi Georg Cantor tarafından 1874 ile 1895 yılları arasında geliştirilen, 20. yüzyıl matematiğinin temelini oluşturan kuramdır.
rdfs:label
  • Théorie des ensembles
  • Halmazelmélet
  • Kümeler kuramı
  • Mengenlehre
  • Multzo-teoria
  • Set theory
  • Teori himpunan
  • Teoria de conjunts
  • Teoria degli insiemi
  • Teoria dos conjuntos
  • Teoria mnogości
  • Teorie množin
  • Teoría de conjuntos
  • Verzamelingenleer
  • Теория множеств
  • Теория на множествата
  • 集合論
  • 집합론
owl:sameAs
http://www.w3.org/ns/prov#wasDerivedFrom
foaf:isPrimaryTopicOf
is dbpedia-owl:domain of
is dbpedia-owl:knownFor of
is dbpedia-owl:wikiPageDisambiguates of
is dbpedia-owl:wikiPageRedirects of
is dbpedia-owl:wikiPageWikiLink of
is prop-fr:champs of
is prop-fr:renomméPour of
is foaf:primaryTopic of