En mathématiques, la théorie des anneaux ou algèbre non commutative traite d'anneaux quelconques, par opposition à l'algèbre commutative.

PropertyValue
dbpedia-owl:abstract
  • En mathématiques, la théorie des anneaux ou algèbre non commutative traite d'anneaux quelconques, par opposition à l'algèbre commutative.
  • 数学において、環論(かんろん、英: ring theory)は(加法と乗法が定義され、整数の持つ性質とよく似た性質を満足する代数的構造である)環を研究する学問分野である。環論の研究対象となるのは、環の構造や環の表現(環上の加群)などについての一般論、および(群環、可除環、普遍展開環などの)具体的な特定の環のクラスあるいは理論と応用の両面で興味深い様々な環の性質(たとえばホモロジー的性質や多項式の等式)などである。可換環は非可換の場合と比べてその性質はよく調べられている。可換環の自然な例を多く提供する代数幾何学や代数的数論は可換環論の発展の大きな原動力であった。この二つは可換環に密接に関係する分野であるから、一般の環論の一部というよりは、可換環論や可換体論の一部と考えるほうが普通である。 非可換環は可換の場合と比べて奇妙な振る舞いをすることが多くあるので、その理論は可換環論とは極めて毛色の異なったものとなる。非可換論は、それ自身の独自の方法論を用いた発展をする一方で、可換環論の方法論に平行する形で(仮想的な)「非可換空間」上の函数環として幾何学的な方法である種の非可換環のクラスを構築するという方法論が新興している。このような傾向は1980年代の非可換幾何学の発展と量子群の発見に始まる。こうした新たなパラダイムは、非可換環(特に非可換ネーター環)のよりよい理解を導くこととなった (Goodearl 1989)。
  • Teoria pierścieni – dział algebry zajmujący się badaniem pierścieni. Znajduje on szerokie zastosowanie w innych obszarach matematyki, między innymi w teorii liczb i geometrii algebraicznej.
  • Теория колец — раздел общей алгебры, изучающий свойства колец — алгебраических структур со сложением и умножением, схожими по поведению со сложением и умножением чисел. Выделяются два раздела теории колец: изучение коммутативных и некоммутативных колец.Коммутативные кольца в целом лучше исследованы, они являются основным предметом изучения коммутативной алгебры, которая является важной частью современной математики, обеспечивающей инструментальные средства для развития алгебраической геометрии и алгебраической теории чисел. Эти три теории настолько тесно связаны, что не всегда возможно указание, к какой области относится тот или иной результат, например, теорема Гильберта о нулях играет фундаментальную роль в алгебраической геометрии, но формулируется и доказывается в терминах коммутативной алгебры. Другой пример — великая теорема Ферма, которая формулируется в терминах элементарной арифметики (являющейся частью коммутативной алгебры), но её доказательство использует глубокие результаты как алгебраической геометрии, так и алгебраической теории чисел.Поведение некоммутативных колец более сложно, довольно долгое время их теория развивалась независимо от коммутативной алгебры, однако в конце XX века появилась тенденция выстраивать эту теорию более геометричным образом, рассматривая такие кольца как кольца функций на (несуществующих) «некоммутативных пространствах». Этот тренд зародился в 1980-х годах с появлением некоммутативной геометрии и открытием квантовых групп, благодаря применению методов этих теорий достигнуто лучшее понимание некоммутативных колец, особенно некоммутативных нётеровых колец.
  • In matematica, e più precisamente in algebra, la teoria degli anelli è lo studio degli anelli, strutture algebriche dotate delle operazioni di somma e prodotto simili ai numeri interi.
  • In abstract algebra, ring theory is the study of rings—algebraic structures in which addition and multiplication are defined and have similar properties to those operations defined for the integers. Ring theory studies the structure of rings, their representations, or, in different language, modules, special classes of rings (group rings, division rings, universal enveloping algebras), as well as an array of properties that proved to be of interest both within the theory itself and for its applications, such as homological properties and polynomial identities. Commutative rings are much better understood than noncommutative ones. Algebraic geometry and algebraic number theory, which provide many natural examples of commutative rings, have driven much of the development of commutative ring theory, which is now, under the name of commutative algebra, a major area of modern mathematics. Because these three fields are so intimately connected it is usually difficult and meaningless to decide which field a particular result belongs to. For example, Hilbert's Nullstellensatz is a theorem which is fundamental for algebraic geometry, and is stated and proved in terms of commutative algebra. Similarly, Fermat's last theorem is stated in terms of elementary arithmetic, which is a part of commutative algebra, but its proof involves deep results of both algebraic number theory and algebraic geometry. Noncommutative rings are quite different in flavour, since more unusual behavior can arise. While the theory has developed in its own right, a fairly recent trend has sought to parallel the commutative development by building the theory of certain classes of noncommutative rings in a geometric fashion as if they were rings of functions on (non-existent) 'noncommutative spaces'. This trend started in the 1980s with the development of noncommutative geometry and with the discovery of quantum groups. It has led to a better understanding of noncommutative rings, especially noncommutative Noetherian rings. (Goodearl 1989)For the definitions of a ring and basic concepts and their properties, see ring (mathematics). The definitions of terms used throughout ring theory may be found in the glossary of ring theory.
  • 수학의 한 분야인 환론(環論, 영어: ring theory)은 환(정수의 집합처럼 좋은 성질을 가진 덧셈과 곱셈 연산이 주어진 집합)을 주 대상으로 한다. 환론의 주요 주제로는 환의 표현(혹은 가군)이나 군환, 나눗셈환, 보편포락대수 등의 특수한 환 및 인접 분야인 호몰로지 대수학 등이 있다.가환환은 비가환환보다 훨씬 많은 성질이 알려져 있으며, 대수기하학 및 대수적 수론과 깊은 관련이 있는 가환대수학의 하위 분야이다. 최근(1980년대 이후)에는 비가환 기하학과 양자군 등의 이론이 나타나면서 비가환환에 대해서도 상당한 연구가 이루어지고 있다.
  • In de wiskunde is de ringtheorie de studie van ringen, algebraïsche structuren, waar de operaties optellen en vermenigvuldigen zijn gedefinieerd en vergelijkbare eigenschappen hebben als bij de gehele getallen. De ringtheorie bestudeert de structuur van ringen, hun representaties, of anders gezegd modulen, speciale klassen van ringen (groepsringen, delingsringen, universele envelopperende algebra's, evenals een scala aan eigenschappen die zowel in de ringtheorie zelf als voor haar toepassingen van belang bleken te zijn, zoals homologische eigenschappen en polynome identiteiten.Commutatieve ringen worden veel beter begrepen dan niet-commutatieve ringen. Door de intieme connecties met de algebraïsche meetkunde en de algebraïsche getaltheorie, die beide veel natuurlijke voorbeelden van commutatieve ringen aandragen, is de theorie van de commutatieve ringen, die eerder als een onderdeel van de commutatieve algebra en de veldtheorie wordt beschouwd dan als een onderdeel van de algemene ringtheorie, heel verschillend van smaak dan de theorie van haar niet-commutatieve tegenhangers. Een vrij recente trend die in de jaren 1980 met de ontwikkeling van de niet-commutatieve meetkunde en met de ontdekking van de kwantumgroepen is begonnen, probeert de situatie om te draaien door de theorie van bepaalde categorieën van niet-commutatieve ringen op een meetkundige manier op te bouwen alsof zij ringen van functies of (niet-bestaande) 'niet-commutatieve ruimten' waren.
dbpedia-owl:wikiPageID
  • 127468 (xsd:integer)
dbpedia-owl:wikiPageInterLanguageLink
dbpedia-owl:wikiPageLength
  • 1568 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 17 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 89841999 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • En mathématiques, la théorie des anneaux ou algèbre non commutative traite d'anneaux quelconques, par opposition à l'algèbre commutative.
  • 数学において、環論(かんろん、英: ring theory)は(加法と乗法が定義され、整数の持つ性質とよく似た性質を満足する代数的構造である)環を研究する学問分野である。環論の研究対象となるのは、環の構造や環の表現(環上の加群)などについての一般論、および(群環、可除環、普遍展開環などの)具体的な特定の環のクラスあるいは理論と応用の両面で興味深い様々な環の性質(たとえばホモロジー的性質や多項式の等式)などである。可換環は非可換の場合と比べてその性質はよく調べられている。可換環の自然な例を多く提供する代数幾何学や代数的数論は可換環論の発展の大きな原動力であった。この二つは可換環に密接に関係する分野であるから、一般の環論の一部というよりは、可換環論や可換体論の一部と考えるほうが普通である。 非可換環は可換の場合と比べて奇妙な振る舞いをすることが多くあるので、その理論は可換環論とは極めて毛色の異なったものとなる。非可換論は、それ自身の独自の方法論を用いた発展をする一方で、可換環論の方法論に平行する形で(仮想的な)「非可換空間」上の函数環として幾何学的な方法である種の非可換環のクラスを構築するという方法論が新興している。このような傾向は1980年代の非可換幾何学の発展と量子群の発見に始まる。こうした新たなパラダイムは、非可換環(特に非可換ネーター環)のよりよい理解を導くこととなった (Goodearl 1989)。
  • Teoria pierścieni – dział algebry zajmujący się badaniem pierścieni. Znajduje on szerokie zastosowanie w innych obszarach matematyki, między innymi w teorii liczb i geometrii algebraicznej.
  • In matematica, e più precisamente in algebra, la teoria degli anelli è lo studio degli anelli, strutture algebriche dotate delle operazioni di somma e prodotto simili ai numeri interi.
  • 수학의 한 분야인 환론(環論, 영어: ring theory)은 환(정수의 집합처럼 좋은 성질을 가진 덧셈과 곱셈 연산이 주어진 집합)을 주 대상으로 한다. 환론의 주요 주제로는 환의 표현(혹은 가군)이나 군환, 나눗셈환, 보편포락대수 등의 특수한 환 및 인접 분야인 호몰로지 대수학 등이 있다.가환환은 비가환환보다 훨씬 많은 성질이 알려져 있으며, 대수기하학 및 대수적 수론과 깊은 관련이 있는 가환대수학의 하위 분야이다. 최근(1980년대 이후)에는 비가환 기하학과 양자군 등의 이론이 나타나면서 비가환환에 대해서도 상당한 연구가 이루어지고 있다.
  • In abstract algebra, ring theory is the study of rings—algebraic structures in which addition and multiplication are defined and have similar properties to those operations defined for the integers.
  • Теория колец — раздел общей алгебры, изучающий свойства колец — алгебраических структур со сложением и умножением, схожими по поведению со сложением и умножением чисел.
  • In de wiskunde is de ringtheorie de studie van ringen, algebraïsche structuren, waar de operaties optellen en vermenigvuldigen zijn gedefinieerd en vergelijkbare eigenschappen hebben als bij de gehele getallen.
rdfs:label
  • Théorie des anneaux
  • Ring theory
  • Ringtheorie
  • Teoria degli anelli
  • Teoria dos anéis
  • Teoria pierścieni
  • Теория колец
  • 環論
  • 환론
owl:sameAs
http://www.w3.org/ns/prov#wasDerivedFrom
foaf:isPrimaryTopicOf
is dbpedia-owl:wikiPageRedirects of
is dbpedia-owl:wikiPageWikiLink of
is foaf:primaryTopic of