En mathématiques, le théorème de Stone-Weierstrass est une généralisation du théorème d'approximation de Weierstrass en analyse réelle, selon lequel toute fonction continue définie sur un segment peut être approchée uniformément par des fonctions polynomiales.La généralisation par Marshall Stone étend ce résultat aux fonctions continues définies sur un espace compact et à valeurs réelles, en remplaçant l'algèbre des fonctions polynomiales par une sous-algèbre ou un treillis vérifiant des hypothèses naturelles.↑ Un tel espace est par définition séparé.

PropertyValue
dbpedia-owl:abstract
  • En mathématiques, le théorème de Stone-Weierstrass est une généralisation du théorème d'approximation de Weierstrass en analyse réelle, selon lequel toute fonction continue définie sur un segment peut être approchée uniformément par des fonctions polynomiales.La généralisation par Marshall Stone étend ce résultat aux fonctions continues définies sur un espace compact et à valeurs réelles, en remplaçant l'algèbre des fonctions polynomiales par une sous-algèbre ou un treillis vérifiant des hypothèses naturelles.
  • Em matemática, o teorema da aproximação de Stone-Weierstrass afirma que toda função real contínua cujo domínio é um intervalo compacto, ou seja, fechado e limitado pode ser aproximado uniformemente por polinômios.Várias generalizações deste teorema foram estabelecidas, como, por exemplo, generalizando a família de aproximantes (que podem ser substituídos por qualquer álgebra de funções com certas propriedades) ou substituindo o domínio por um compacto qualquer.
  • Weierstrass (első) approximációs tétele a matematikai analízis gyakorlati és elméleti szempontból is jelentős eredménye. A Karl Weierstrass német matematikus által 1885-ben publikált tétel szerint a valós számok egy zárt intervallumán folytonos valós függvények egyenletesen közelíthetők polinomokkal.
  • 数学におけるストーン・ワイエルシュトラスの定理とは、局所コンパクト空間上の連続関数の代数系における部分代数の稠密性に関する定理である。カール・ワイエルシュトラスによって1885年に示されたワイエルシュトラスの近似定理がその原型であり、1937年にマーシャル・ストーンによって大幅に一般化された現在の形の結果が得られた。ワイエルシュトラスの近似定理は、閉区間上のどんな連続関数も多項式関数によって任意の精度で一様に近似できることを述べている。ストーン・ワイエルシュトラスの定理は、局所コンパクトハウスドルフ空間 X 上定められた複素数値の連続関数の代数系 C(X) の部分代数 A が一様収束の位相に関して稠密になるための十分条件として、 Aの元によって X の任意の異なる点が分離されること 関数の複素共役をとる操作について A が閉じていることの二つが両立していること、を挙げている。Xが実閉区間であるとき多項式関数のなす代数系は上記の条件を共に満たすため、ワイエルシュトラスの近似定理はストーン・ワイエルシュトラスの定理の特別な場合になっている。
  • En análisis matemático, el teorema de aproximación de Weierstrass es un resultado que afirma que las funciones reales continuas definidas en un intervalo cerrado y acotado pueden ser aproximadas tanto como se quiera por un polinomio. Es decir, los polinomios de coeficientes reales son densos en el conjunto de las funciones continuas sobre un intervalo cerrado.Karl Weierstrass dio una demostración de este resultado en 1885. Posteriormente, Marshall H. Stone generalizó el teorema (Stone, 1937) y simplificó la demostración. A esta generalización se la conoce como el teorema de Stone–Weierstrass.
  • In analisi matematica, il teorema di approssimazione di Weierstrass è un risultato che afferma che ogni funzione reale continua definita in un intervallo chiuso e limitato può essere approssimata a piacere con un polinomio di grado opportuno.Questo è stato dimostrato da Karl Weierstrass nel 1885. Il teorema ha importanti risvolti sia teorici che pratici. Marshall Stone lo ha generalizzato nel 1937, allargando il dominio ad un certo tipo di spazio topologico e non limitandosi ai polinomi come funzioni approssimanti. Il risultato generale è noto come teorema di Stone-Weierstrass.
  • In mathematical analysis, the Weierstrass approximation theorem states that every continuous function defined on a closed interval [a, b] can be uniformly approximated as closely as desired by a polynomial function. Because polynomials are among the simplest functions, and because computers can directly evaluate polynomials, this theorem has both practical and theoretical relevance, especially in polynomial interpolation. The original version of this result was established by Karl Weierstrass in 1885 using the Weierstrass transform.Marshall H. Stone considerably generalized the theorem (Stone 1937) and simplified the proof (Stone 1948). His result is known as the Stone–Weierstrass theorem. The Stone–Weierstrass theorem generalizes the Weierstrass approximation theorem in two directions: instead of the real interval [a, b], an arbitrary compact Hausdorff space X is considered, and instead of the algebra of polynomial functions, approximation with elements from more general subalgebras of C(X) is investigated. The Stone–Weierstrass theorem is a vital result in the study of the algebra of continuous functions on a compact Hausdorff space.Further, there is a generalization of the Stone–Weierstrass theorem to noncompact Tychonoff spaces, namely, any continuous function on a Tychonoff space is approximated uniformly on compact sets by algebras of the type appearing in the Stone–Weierstrass theorem and described below.A different generalization of Weierstrass' original theorem is Mergelyan's theorem, which generalizes it to functions defined on certain subsets of the complex plane.
  • Der Approximationssatz von Stone-Weierstraß (nach Marshall Harvey Stone und Karl Weierstraß) ist ein Satz aus der Analysis, der sagt, unter welchen Voraussetzungen man jede stetige Funktion durch einfachere Funktionen beliebig gut approximieren kann.
  • В математике аппроксимацио́нной теоремой Вейерштра́сса (Стоуна — Вейерштрасса) называют теорему, утверждающую, что для любой непрерывной функции на отрезке можно подобрать последовательность многочленов, равномерно сходящихся к этой функции на отрезке.
dbpedia-owl:thumbnail
dbpedia-owl:wikiPageID
  • 19533 (xsd:integer)
dbpedia-owl:wikiPageLength
  • 20285 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 62 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 107650082 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • En mathématiques, le théorème de Stone-Weierstrass est une généralisation du théorème d'approximation de Weierstrass en analyse réelle, selon lequel toute fonction continue définie sur un segment peut être approchée uniformément par des fonctions polynomiales.La généralisation par Marshall Stone étend ce résultat aux fonctions continues définies sur un espace compact et à valeurs réelles, en remplaçant l'algèbre des fonctions polynomiales par une sous-algèbre ou un treillis vérifiant des hypothèses naturelles.↑ Un tel espace est par définition séparé.
  • Em matemática, o teorema da aproximação de Stone-Weierstrass afirma que toda função real contínua cujo domínio é um intervalo compacto, ou seja, fechado e limitado pode ser aproximado uniformemente por polinômios.Várias generalizações deste teorema foram estabelecidas, como, por exemplo, generalizando a família de aproximantes (que podem ser substituídos por qualquer álgebra de funções com certas propriedades) ou substituindo o domínio por um compacto qualquer.
  • Weierstrass (első) approximációs tétele a matematikai analízis gyakorlati és elméleti szempontból is jelentős eredménye. A Karl Weierstrass német matematikus által 1885-ben publikált tétel szerint a valós számok egy zárt intervallumán folytonos valós függvények egyenletesen közelíthetők polinomokkal.
  • 数学におけるストーン・ワイエルシュトラスの定理とは、局所コンパクト空間上の連続関数の代数系における部分代数の稠密性に関する定理である。カール・ワイエルシュトラスによって1885年に示されたワイエルシュトラスの近似定理がその原型であり、1937年にマーシャル・ストーンによって大幅に一般化された現在の形の結果が得られた。ワイエルシュトラスの近似定理は、閉区間上のどんな連続関数も多項式関数によって任意の精度で一様に近似できることを述べている。ストーン・ワイエルシュトラスの定理は、局所コンパクトハウスドルフ空間 X 上定められた複素数値の連続関数の代数系 C(X) の部分代数 A が一様収束の位相に関して稠密になるための十分条件として、 Aの元によって X の任意の異なる点が分離されること 関数の複素共役をとる操作について A が閉じていることの二つが両立していること、を挙げている。Xが実閉区間であるとき多項式関数のなす代数系は上記の条件を共に満たすため、ワイエルシュトラスの近似定理はストーン・ワイエルシュトラスの定理の特別な場合になっている。
  • Der Approximationssatz von Stone-Weierstraß (nach Marshall Harvey Stone und Karl Weierstraß) ist ein Satz aus der Analysis, der sagt, unter welchen Voraussetzungen man jede stetige Funktion durch einfachere Funktionen beliebig gut approximieren kann.
  • В математике аппроксимацио́нной теоремой Вейерштра́сса (Стоуна — Вейерштрасса) называют теорему, утверждающую, что для любой непрерывной функции на отрезке можно подобрать последовательность многочленов, равномерно сходящихся к этой функции на отрезке.
  • In analisi matematica, il teorema di approssimazione di Weierstrass è un risultato che afferma che ogni funzione reale continua definita in un intervallo chiuso e limitato può essere approssimata a piacere con un polinomio di grado opportuno.Questo è stato dimostrato da Karl Weierstrass nel 1885. Il teorema ha importanti risvolti sia teorici che pratici.
  • En análisis matemático, el teorema de aproximación de Weierstrass es un resultado que afirma que las funciones reales continuas definidas en un intervalo cerrado y acotado pueden ser aproximadas tanto como se quiera por un polinomio. Es decir, los polinomios de coeficientes reales son densos en el conjunto de las funciones continuas sobre un intervalo cerrado.Karl Weierstrass dio una demostración de este resultado en 1885. Posteriormente, Marshall H.
  • In mathematical analysis, the Weierstrass approximation theorem states that every continuous function defined on a closed interval [a, b] can be uniformly approximated as closely as desired by a polynomial function. Because polynomials are among the simplest functions, and because computers can directly evaluate polynomials, this theorem has both practical and theoretical relevance, especially in polynomial interpolation.
rdfs:label
  • Théorème de Stone-Weierstrass
  • Satz von Stone-Weierstraß
  • Stone–Weierstrass theorem
  • Teorema de Stone-Weierstrass
  • Teorema de aproximación de Weierstrass
  • Teorema di approssimazione di Weierstrass
  • Twierdzenie Stone'a-Weierstrassa
  • Weierstrass approximációs tétele
  • ストーン=ワイエルシュトラスの定理
  • Аппроксимационная теорема Вейерштрасса
owl:sameAs
http://www.w3.org/ns/prov#wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbpedia-owl:knownFor of
is dbpedia-owl:wikiPageRedirects of
is dbpedia-owl:wikiPageWikiLink of
is prop-fr:renomméPour of
is foaf:primaryTopic of