확률론과 통계학에서, 베이즈 정리(영어: Bayes’ theorem)는 두 확률 변수의 사전 확률과 사후 확률 사이의 관계를 나타내는 정리다. 베이즈 확률론 해석에 따르면 베이즈 정리는 새로운 근거가 제시될 때 사후 확률이 어떻게 갱신되는지를 구한다.

PropertyValue
dbpedia-owl:abstract
  • 확률론과 통계학에서, 베이즈 정리(영어: Bayes’ theorem)는 두 확률 변수의 사전 확률과 사후 확률 사이의 관계를 나타내는 정리다. 베이즈 확률론 해석에 따르면 베이즈 정리는 새로운 근거가 제시될 때 사후 확률이 어떻게 갱신되는지를 구한다.
  • Теорема на Бейс по името на Томас Бейс (Thomas Bayes) се използва в теорията на вероятностите за изчисляване на вероятността за настъпване на дадено събитие, след като вече е известна част от информацията за него.
  • Il teorema di Bayes (conosciuto anche come formula di Bayes o teorema della probabilità delle cause), proposto da Thomas Bayes, deriva da due teoremi fondamentali delle probabilità:il teorema della probabilità composta e il teorema della probabilità assoluta. Viene impiegato per calcolare la probabilità di una causa che ha scatenato l'evento verificato. Per esempio si può calcolare la probabilità che una certa persona soffra della malattia per cui ha eseguito il test diagnostico (nel caso in cui questo sia risultato negativo) o viceversa non sia affetta da tale malattia (nel caso in cui il test sia risultato positivo), conoscendo la frequenza con cui si presenta la malattia e la percentuale di efficacia del test diagnostico.Formalmente il teorema di Bayes è valido in tutte le interpretazioni della probabilità. In ogni caso, l'importanza di questo teorema per la statistica è tale che la divisione tra le due scuole (statistica bayesiana e statistica frequentista) nasce dall'interpretazione che si dà al teorema stesso.
  • Probabilitate teorian, Bayes-en teoremak gertakizun baten inguruan jasotako informazioaz baliatuz, gertakizun horren probabilitatea nola aldatu behar diren azaltzen duen teorema da. Adibidez, Bayes-en teorema pertsona bat gaixotasun batek jota izateko probabilitatea zehazteko erabil daiteke pertsona horri diagnostiko froga baten emaitza jakin ondoren. Bayes-en teoremari esker, estatistika adar oso bat garatu da: estatistika bayestarra. Thomas Bayes zientzia gizonak asmatu zuen XVIII. mendean.
  • Bayes teoremi, olasılık kuramı içinde incelenen önemli bir konudur. Bu teorem bir rassal değişken için olasılık dağılımı içinde koşullu olasılıklar ile marjinal olasılıklar arasındaki ilişkiyi gösterir. Bu şekli ile Bayes teoremi bütün istatistikçiler için kabul edilir bir ilişkiyi açıklar. Bu kavram için Bayes kuralı veya Bayes savı veya Bayes kanunu adları da kullanılır. Ancak bazı istatistikçiler için Bayes teoremi özel olarak değişik bir önem de taşır. Felsefi temelde olasılık değerlerinin nesnesel bir özellik değil, gözlemcinin meydana çıkardığı subjektif bir değer olarak kabul eden sübjektivist olasılık düşünürlerine göre Bayes teoremi, yeni kanıtlar ışığında olasılık değeri hakkındaki sübjektif inanışların güncelleştirilip değiştirilmesini sağlayan temel bir gereçtir; yani sonsal bir yaklaşımın temelidir.Olasılık teorisi içinde incelenen bir 'olay olarak B olayına koşullu bir A olayı (yani B olayının bilindiği halde A olayı) için olasılık değeri, A olayına koşullu olarak B olayı (yani A olayı bilindiği haldeki B olayı) için olasılık değerinden farklıdır. Ancak bu iki birbirine ters koşulluluk arasında çok belirli bir ilişki vardır ve bu ilişkiye (ilk açıklayan istatistikçi İngiliz Thomas Bayes (1702–1761) adına atfen) Bayes Teoremi denilmektedir.Formel bir teorem olarak Bayes teoremi, olasılık kavramını inceleyen her türlü değişik felsefi temel fikre bağlı olan her türlü istatistikçi tarafından kabul edilir. Ancak olasılığı objektif bir değer olarak gören ve relatif çokluluk olarak tayin eden frekanscı (en:frequentist) ekolüne bağlı olan istatistikçiler ile sübjektivist (veya Bayes tipi) ekoline bağlı olan istatistikçiler arasında bu teoremin pratikte nasıl kullanılabileceği hakkında büyük bir fikir ayrılığı bulunmaktadır. Frekanscı ekolüne dahil olanlar olasılık değerlerini rastgele olaylarda meydana çıkma çokluluğuna göre veya anakütlenin altsetlerinin tam anakütleye orantısı olarak saptanması gerekeğini kabul etmektedirler. Bunlara göre yeni kanıtlar karşısında olasılık değerinin değişme imkânı yoktur. Bu nedenle frekanscı ekolü için Bayes teoremi sadece koşulluluklar arasında ilişkiyi gösterir ve bunun pratikte kullanılma gücü küçüktür. Hâlbuki sübjektivist ekolüne göre olasılık gözlemcinin sübjektif belirsizlik ifadesidir. Bu nedenle olasılık değeri sübjektif olup, yeni kanıtlar geldikçe değiştirilebileceğine inanmakta ve böylece Bayes teoremini istatistik bir incelemenin temel taşı saymaktadırlar.
  • Der Satz von Bayes ist ein mathematischer Satz aus der Wahrscheinlichkeitstheorie, der die Berechnung bedingter Wahrscheinlichkeiten beschreibt. Er ist nach dem englischen Mathematiker Thomas Bayes benannt, der ihn erstmals in einem Spezialfall in der 1763 posthum veröffentlichten Abhandlung An Essay Towards Solving a Problem in the Doctrine of Chances beschrieb. Er wird auch Formel von Bayes oder (als Lehnübersetzung) Bayes-Theorem genannt.
  • Теорема Байеса (или формула Байеса) — одна из основных теорем теории вероятностей, которая позволяет определить вероятность какого-либо события при условии, что произошло другое статистически взаимозависимое с ним событие. Названа в честь её автора, преп. Томаса Байеса (посвящённая ей работа «An Essay towards solving a Problem in the Doctrine of Chances» впервые опубликована в 1763 году, через 2 года после смерти автора). Полученную по формуле вероятность можно далее уточнять, принимая во внимание данные новых наблюдений.Психологические эксперименты показали, что люди часто неверно оценивают апостериорную вероятность события, поскольку игнорируют его априорную вероятность. Поэтому правильный результат по формуле Байеса может сильно отличаться от интуитивно ожидаемого.
  • In probability theory and statistics, Bayes' theorem (alternatively Bayes' law or Bayes' rule) is a result that is of importance in the mathematical manipulation of conditional probabilities. Bayes rule can be derived from more basic axioms of probability, specifically conditional probability.When applied, the probabilities involved in Bayes' theorem may have any of a number of probability interpretations. In one of these interpretations, the theorem is used directly as part of a particular approach to statistical inference. ln particular, with the Bayesian interpretation of probability, the theorem expresses how a subjective degree of belief should rationally change to account for evidence: this is Bayesian inference, which is fundamental to Bayesian statistics. However, Bayes' theorem has applications in a wide range of calculations involving probabilities, not just in Bayesian inference.Bayes' theorem is named after Thomas Bayes (/ˈbeɪz/; 1701–1761), who first suggested using the theorem to update beliefs. His work was significantly edited and updated by Richard Price before it was posthumously read at the Royal Society. The ideas gained limited exposure until they were independently rediscovered and further developed by Laplace, who first published the modern formulation in his 1812 Théorie analytique des probabilités.Sir Harold Jeffreys wrote that Bayes' theorem “is to the theory of probability what Pythagoras's theorem is to geometry”.
  • Dalam teori probabilitas dan statistika, teorema Bayes adalah sebuah teorema dengan dua penafsiran berbeda. Dalam penafsiran Bayes, teorema ini menyatakan seberapa jauh derajat kepercayaan subjektif harus berubah secara rasional ketika ada petunjuk baru. Dalam penafsiran frekuentis teorema ini menjelaskan representasi invers probabilitas dua kejadian. Teorema ini merupakan dasar dari statistika Bayes dan memiliki penerapan dalam sains, rekayasa, ilmu ekonomi (terutama ilmu ekonomi mikro), teori permainan, kedokteran dan hukum. Penerapan teorema Bayes untuk memperbarui kepercayaan dinamakan inferens Bayes.
  • ベイズの定理(ベイズのていり、英: Bayes' theorem)とは、条件付き確率に関し、トーマス・ベイズによって示された定理である。ベイズ統計学においては基礎として利用され、いくつかの未観測要素を含む推論等に応用される。例えば、迷惑メールの発見・分類といった作業のコンピュータを用いた自動化(フィルタリング)等の情報工学上の情報ふるい分けにも利用されている。
dbpedia-owl:wikiPageExternalLink
dbpedia-owl:wikiPageID
  • 45663 (xsd:integer)
dbpedia-owl:wikiPageLength
  • 22939 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 52 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 110156554 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
prop-fr:année
  • 1964 (xsd:integer)
  • 2011 (xsd:integer)
  • 2013 (xsd:integer)
prop-fr:doi
  • 10.112600 (xsd:double)
prop-fr:langue
  • en
prop-fr:lienAuteur
  • Bradley Efron
  • Richard Price
prop-fr:lienPériodique
  • Science
  • Philosophical Transactions of the Royal Society
prop-fr:lienÉditeur
  • Yale University Press
prop-fr:mois
  • 6 (xsd:integer)
prop-fr:nom
  • Price
  • Efron
  • McGrayne
prop-fr:numéro
  • 6137 (xsd:integer)
prop-fr:pages
  • 296 (xsd:integer)
  • 1177 (xsd:integer)
prop-fr:prénom
  • Richard
  • Bradley
  • Sharon Bertsch
prop-fr:périodique
  • Science
  • Philosophical Transactions
prop-fr:sousTitre
  • How Bayes' Rule Cracked the Enigma Code, Hunted Down Russian Submarines, and Emerged Triumphant from Two Centuries of Controversy
prop-fr:titre
  • A demonstration of the second rule in the essay towards the solution of a problem in the doctrines of chances
  • Bayes' Theorem in the 21st Century
  • The Theory That Would Not Die
prop-fr:volume
  • 54 (xsd:integer)
  • 340 (xsd:integer)
prop-fr:wikiPageUsesTemplate
prop-fr:éditeur
  • Yale University Press
dcterms:subject
rdfs:comment
  • 확률론과 통계학에서, 베이즈 정리(영어: Bayes’ theorem)는 두 확률 변수의 사전 확률과 사후 확률 사이의 관계를 나타내는 정리다. 베이즈 확률론 해석에 따르면 베이즈 정리는 새로운 근거가 제시될 때 사후 확률이 어떻게 갱신되는지를 구한다.
  • Теорема на Бейс по името на Томас Бейс (Thomas Bayes) се използва в теорията на вероятностите за изчисляване на вероятността за настъпване на дадено събитие, след като вече е известна част от информацията за него.
  • Probabilitate teorian, Bayes-en teoremak gertakizun baten inguruan jasotako informazioaz baliatuz, gertakizun horren probabilitatea nola aldatu behar diren azaltzen duen teorema da. Adibidez, Bayes-en teorema pertsona bat gaixotasun batek jota izateko probabilitatea zehazteko erabil daiteke pertsona horri diagnostiko froga baten emaitza jakin ondoren. Bayes-en teoremari esker, estatistika adar oso bat garatu da: estatistika bayestarra. Thomas Bayes zientzia gizonak asmatu zuen XVIII. mendean.
  • Der Satz von Bayes ist ein mathematischer Satz aus der Wahrscheinlichkeitstheorie, der die Berechnung bedingter Wahrscheinlichkeiten beschreibt. Er ist nach dem englischen Mathematiker Thomas Bayes benannt, der ihn erstmals in einem Spezialfall in der 1763 posthum veröffentlichten Abhandlung An Essay Towards Solving a Problem in the Doctrine of Chances beschrieb. Er wird auch Formel von Bayes oder (als Lehnübersetzung) Bayes-Theorem genannt.
  • ベイズの定理(ベイズのていり、英: Bayes' theorem)とは、条件付き確率に関し、トーマス・ベイズによって示された定理である。ベイズ統計学においては基礎として利用され、いくつかの未観測要素を含む推論等に応用される。例えば、迷惑メールの発見・分類といった作業のコンピュータを用いた自動化(フィルタリング)等の情報工学上の情報ふるい分けにも利用されている。
  • Dalam teori probabilitas dan statistika, teorema Bayes adalah sebuah teorema dengan dua penafsiran berbeda. Dalam penafsiran Bayes, teorema ini menyatakan seberapa jauh derajat kepercayaan subjektif harus berubah secara rasional ketika ada petunjuk baru. Dalam penafsiran frekuentis teorema ini menjelaskan representasi invers probabilitas dua kejadian.
  • Теорема Байеса (или формула Байеса) — одна из основных теорем теории вероятностей, которая позволяет определить вероятность какого-либо события при условии, что произошло другое статистически взаимозависимое с ним событие. Названа в честь её автора, преп. Томаса Байеса (посвящённая ей работа «An Essay towards solving a Problem in the Doctrine of Chances» впервые опубликована в 1763 году, через 2 года после смерти автора).
  • In probability theory and statistics, Bayes' theorem (alternatively Bayes' law or Bayes' rule) is a result that is of importance in the mathematical manipulation of conditional probabilities. Bayes rule can be derived from more basic axioms of probability, specifically conditional probability.When applied, the probabilities involved in Bayes' theorem may have any of a number of probability interpretations.
  • Il teorema di Bayes (conosciuto anche come formula di Bayes o teorema della probabilità delle cause), proposto da Thomas Bayes, deriva da due teoremi fondamentali delle probabilità:il teorema della probabilità composta e il teorema della probabilità assoluta. Viene impiegato per calcolare la probabilità di una causa che ha scatenato l'evento verificato.
  • Bayes teoremi, olasılık kuramı içinde incelenen önemli bir konudur. Bu teorem bir rassal değişken için olasılık dağılımı içinde koşullu olasılıklar ile marjinal olasılıklar arasındaki ilişkiyi gösterir. Bu şekli ile Bayes teoremi bütün istatistikçiler için kabul edilir bir ilişkiyi açıklar. Bu kavram için Bayes kuralı veya Bayes savı veya Bayes kanunu adları da kullanılır. Ancak bazı istatistikçiler için Bayes teoremi özel olarak değişik bir önem de taşır.
rdfs:label
  • Théorème de Bayes
  • Bayes teoremi
  • Bayes' theorem
  • Bayes-tétel
  • Bayesen teorema
  • Bayesova věta
  • Satz von Bayes
  • Teorema Bayes
  • Teorema de Bayes
  • Teorema de Bayes
  • Teorema de Bayes
  • Teorema di Bayes
  • Theorema van Bayes
  • Twierdzenie Bayesa
  • Теорема Байеса
  • Теорема на Бейс
  • ベイズの定理
  • 베이즈 정리
owl:sameAs
http://www.w3.org/ns/prov#wasDerivedFrom
foaf:isPrimaryTopicOf
is dbpedia-owl:knownFor of
is dbpedia-owl:wikiPageRedirects of
is dbpedia-owl:wikiPageWikiLink of
is prop-fr:renomméPour of
is foaf:primaryTopic of