Le théorème KAM est un théorème de mécanique hamiltonienne qui affirme la persistance de tores invariants sur lesquels le mouvement est quasi-périodique, pour les perturbations de certains systèmes hamiltoniens.Il doit son nom aux initiales de trois mathématiciens qui ont donné naissance à la théorie KAM : Kolmogorov, Arnold et Moser. Kolmogorov annonça un premier résultat en 1954, mais il ne donna que les grandes lignes de sa démonstration.

PropertyValue
dbpedia-owl:abstract
  • Le théorème KAM est un théorème de mécanique hamiltonienne qui affirme la persistance de tores invariants sur lesquels le mouvement est quasi-périodique, pour les perturbations de certains systèmes hamiltoniens.Il doit son nom aux initiales de trois mathématiciens qui ont donné naissance à la théorie KAM : Kolmogorov, Arnold et Moser. Kolmogorov annonça un premier résultat en 1954, mais il ne donna que les grandes lignes de sa démonstration. Le théorème de Kolmogorov fut démontré rigoureusement en 1963 par Arnold. Moser obtint au même moment un théorème de type KAM dans une cadre différentiable.On pensait autrefois que l'hypothèse ergodique de Boltzmann s'appliquait à tous les systèmes dynamiques non-intégrables. Le théorème KAM met en défaut cette hypothèse, comme c'était déjà le cas avec le résultat de l'expérience de Fermi-Pasta-Ulam (1953). En effet, le théorème KAM nous apprend que la perturbation d'un système intégrable ne conduit pas nécessairement à un système ergodique, mais que des tores invariants peuvent subsister dans des régions de mesure finie de l'espace des phases, correspondant à des îlots où la dynamique du système perturbé reste quasi-périodique.
  • Il teorema di Kolmogorov-Arnold-Moser (noto anche come teorema KAM) è un risultato della teoria dei sistemi dinamici sull'esistenza di moti quasi-periodici sotto "piccole perturbazioni", e deve il suo nome ai tre matematici che si sono impegnati nel suo sviluppo nel corso degli anni, primo fra tutti Andrej Kolmogorov nel 1954 che ha fornito la prima impostazione del problema della ricerca di orbite quasi-periodiche persistenti in un sistema dinamico conservativo perturbato. Il problema è stato sviluppato ulteriormente nel 1962 da Jürgen Kurt Moser e nel 1963 da Vladimir Arnol'd che ne ha fornito una formalizzazione per sistemi hamiltoniani.Il teorema è abbastanza elaborato, e la teoria KAM che ne deriva è ancora in fase di sviluppo. Di solito è enunciato in termini delle orbite nello spazio delle fasi di un sistema hamiltoniano quasi-integrabile. Il moto di un sistema sotto queste condizioni è confinato all'interno di un toro invariante, definito dalle variabili angolo-azione dalla teoria di Hamilton-Jacobi; una simulazione di un tale sistema mostra che la soluzione ha un comportamento quasi-periodico. Se il sistema è soggetto ad una debole perturbazione nonlineare (questo è il fulcro del teorema), alcuni dei tori invarianti vengono deformati ed altri, invece, vengono distrutti. Il criterio secondo il quale ciò avviene, è una condizione di "quasi-risonanza" sulle frequenze dei moti (commensurabilità), ed il teorema quantifica le condizioni sulle perturbazioni affinché ciò avvenga.Quello che succede è che questi tori deformati hanno dei punti (in numero pari) in comune con i tori indeformati. Questo avviene poiché il sistema è conservativo. Questi punti appaiono in coppie di punti fissi ellittici e iperbolici. Nei punti fissi ellittici abbiamo la stessa dinamica del sistema principale, cioè esisteranno nei punti ellittici dei tori risonanti, dando così origine ad una struttura frattale. Quello che succede nei punti iperbolici invece è che essi hanno una struttura simile a quella di un punto a sella. In questi punti vi è un comportamento caotico del sistema. In questi punti si ha che i punti "entranti" nel punto fisso, ovvero la varietà stabile, sono un insieme invariante. Stesso discorso per i punti che si allontanano dal punto fisso (varietà instabile). Se esiste un'intersezione omoclina di queste due varietà ne esisteranno infinite. Melnikov ha dimostrato che per una perturbazione di tipo periodica e hamiltoniana le due varietà si incontrano almeno una volta (e quindi infinite). Questa dimostrazione è nota come criterio di Melnikov.
  • Теория Колмогорова — Арнольда — Мозера, или теория КАМ — названная в честь её создателей, А. Н. Колмогорова, В. И. Арнольда и Ю. Мозера, ветвь теории динамических систем, изучающая малые возмущения почти периодической динамики в гамильтоновых системах и родственных им случаях — в частности, в динамике симплектических отображений. Её основная теорема, теорема Колмогорова — Арнольда — Мозера, утверждает сохранение, в определённом смысле, большинства инвариантных торов в фазовом пространстве при малом возмущении вполне интегрируемой гамильтоновой системы.Одним из наиболее известных примеров, относящихся к области применимости теории КАМ, является вопрос об устойчивости Солнечной системы (поскольку описывающие её уравнения близки к уравнениям вполне интегрируемой системы).Создание теории КАМ дало мощный толчок к развитию (применявшегося в ней) метода нормальных форм дифференциальных уравнений.
  • The Kolmogorov–Arnold–Moser theorem (KAM theorem) is a result in dynamical systems about the persistence of quasi-periodic motions under small perturbations. The theorem partly resolves the small-divisor problem that arises in the perturbation theory of classical mechanics.The problem is whether or not a small perturbation of a conservative dynamical system results in a lasting quasiperiodic orbit. The original breakthrough to this problem was given by Andrey Kolmogorov in 1954. This was rigorously proved and extended by Vladimir Arnold (in 1963 for analytic Hamiltonian systems) and Jürgen Moser (in 1962 for smooth twist maps), and the general result is known as the KAM theorem. The KAM theorem, as it was originally stated, could not be applied directly as a whole to the motions of the solar system. However, it is useful in generating corrections of astronomical models, and to prove long-term stability and the avoidance of orbital resonance in solar system. Arnold used the methods of KAM to prove the stability of elliptical orbits in the planar three-body problem.
  • Das Kolmogorow-Arnold-Moser-Theorem (kurz „KAM-Theorem“) ist ein Resultat aus der Theorie der dynamischen Systeme, das Aussagen über das Verhalten eines solchen Systems unter kleinen Störungen macht. Das Theorem löst partiell das Problem der kleinen Teiler, das in der Störungsrechnung von dynamischen Systemen, insbesondere in der Himmelsmechanik, auftaucht.Das KAM-Theorem entsprang der Fragestellung, ob eine kleine Störung eines konservativen dynamischen Systems zu einer quasiperiodischen Bewegung führt. Der Durchbruch bei der Beantwortung dieser Frage gelang Kolmogorow im Jahre 1954. Das Resultat wurde 1963 von Moser für sogenannte smooth twist maps und 1964 von Arnold für hamiltonsche Systeme streng bewiesen.
dbpedia-owl:wikiPageExternalLink
dbpedia-owl:wikiPageID
  • 741944 (xsd:integer)
dbpedia-owl:wikiPageLength
  • 3019 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 22 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 108932527 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • Le théorème KAM est un théorème de mécanique hamiltonienne qui affirme la persistance de tores invariants sur lesquels le mouvement est quasi-périodique, pour les perturbations de certains systèmes hamiltoniens.Il doit son nom aux initiales de trois mathématiciens qui ont donné naissance à la théorie KAM : Kolmogorov, Arnold et Moser. Kolmogorov annonça un premier résultat en 1954, mais il ne donna que les grandes lignes de sa démonstration.
  • The Kolmogorov–Arnold–Moser theorem (KAM theorem) is a result in dynamical systems about the persistence of quasi-periodic motions under small perturbations. The theorem partly resolves the small-divisor problem that arises in the perturbation theory of classical mechanics.The problem is whether or not a small perturbation of a conservative dynamical system results in a lasting quasiperiodic orbit. The original breakthrough to this problem was given by Andrey Kolmogorov in 1954.
  • Das Kolmogorow-Arnold-Moser-Theorem (kurz „KAM-Theorem“) ist ein Resultat aus der Theorie der dynamischen Systeme, das Aussagen über das Verhalten eines solchen Systems unter kleinen Störungen macht.
  • Il teorema di Kolmogorov-Arnold-Moser (noto anche come teorema KAM) è un risultato della teoria dei sistemi dinamici sull'esistenza di moti quasi-periodici sotto "piccole perturbazioni", e deve il suo nome ai tre matematici che si sono impegnati nel suo sviluppo nel corso degli anni, primo fra tutti Andrej Kolmogorov nel 1954 che ha fornito la prima impostazione del problema della ricerca di orbite quasi-periodiche persistenti in un sistema dinamico conservativo perturbato.
  • Теория Колмогорова — Арнольда — Мозера, или теория КАМ — названная в честь её создателей, А. Н. Колмогорова, В. И. Арнольда и Ю. Мозера, ветвь теории динамических систем, изучающая малые возмущения почти периодической динамики в гамильтоновых системах и родственных им случаях — в частности, в динамике симплектических отображений.
rdfs:label
  • Théorème KAM
  • Теория Колмогорова — Арнольда — Мозера
  • Kolmogorov–Arnold–Moser theorem
  • Kolmogorow-Arnold-Moser-Theorem
  • Teorema de Kolmogorov–Arnold–Moser
  • Teorema de Kolmogórov-Arnold-Moser
  • Teorema de Kolmogórov-Arnold-Moser
  • Teorema di Kolmogorov-Arnold-Moser
owl:sameAs
http://www.w3.org/ns/prov#wasDerivedFrom
foaf:isPrimaryTopicOf
is dbpedia-owl:knownFor of
is dbpedia-owl:wikiPageDisambiguates of
is dbpedia-owl:wikiPageRedirects of
is dbpedia-owl:wikiPageWikiLink of
is prop-fr:renomméPour of
is foaf:primaryTopic of