En mathématiques, plus précisément en algèbre multilinéaire et en géométrie différentielle, un tenseur désigne un objet très général, dont la valeur s'exprime dans un espace vectoriel. On peut l'utiliser entre autres pour représenter des applications multilinéaires ou des multivecteurs.

PropertyValue
dbpedia-owl:abstract
  • En mathématiques, plus précisément en algèbre multilinéaire et en géométrie différentielle, un tenseur désigne un objet très général, dont la valeur s'exprime dans un espace vectoriel. On peut l'utiliser entre autres pour représenter des applications multilinéaires ou des multivecteurs. On pourrait abusivement considérer qu'un tenseur est une généralisation à n indices du concept de matrice carrée (la matrice possède un indice ligne et un indice colonne — un tenseur peut posséder un nombre arbitraire d'indices inférieurs, covariants, et d'indices supérieurs, contravariants, à ne pas confondre avec des exposants), mais la comparaison s'arrête là car une matrice n'est qu'un simple tableau de nombres qui peut être utilisé pour représenter des objets abstraits, alors que le tenseur est, comme les vecteurs et les applications multilinéaires, un objet abstrait dont les coordonnées changent lorsqu'on passe d'une représentation dans une base donnée à celle dans une autre base.On peut envisager l'outil tenseur dans 4 types d'utilisation différents : Le cas simple, où on l'utilise pour ses capacités à représenter des objets algébriques complexes et où on n'a pas besoin des concepts de distances ni d'angles ; on n'introduira pas de produit scalaire, et dans ce cas les coordonnées co-variantes représentent des objets de type application linéaire et les coordonnées contravariantes représentent des objets de type (multi-)vecteurs. Le cas où la base est orthonormée, et où il n'y a pas de différence entre coordonnées covariantes et contravariantes. Le cas où la base n'est pas orthonormée, et où le produit scalaire est défini par un tenseur métrique. Dans ce cas, le tenseur métrique permet de convertir les coordonnées covariantes en coordonnées contravariantes (et vice versa). Le cas des espaces courbes de Riemann et plus tard, de la relativité générale, dans lesquels le tenseur métrique est en fait un champ de tenseurs appelé métrique riemannienne (resp Métrique pseudo-riemannienne) et qui dépend donc de la position.Dans tous ces cas, le terme tenseur est souvent utilisé par extension, pour désigner un champ de tenseurs, c'est-à-dire une application qui associe à chaque point d'un espace géométrique un tenseur différent.En physique, les tenseurs sont utilisés pour décrire et manipuler diverses grandeurs et propriétés physiques comme le champ électrique, la permittivité, les déformations, les contraintes etc.La première utilisation de la notion et du terme de tenseur s'est faite dans le cadre de la mécanique des milieux continus, en relation avec la nécessité de décrire les contraintes et les déformations subies par les corps étendus, à partir de laquelle fut formalisée la mécanique rationnelle. En particulier, le tenseur des contraintes et le tenseur des déformations sont utilisés dans la science des constructions pour définir l'état de tension et de déformation en tout point d'une structure. Outre la mécanique des fluides et mécanique du solide, les tenseurs sont utilisés dans de nombreux autres domaines de la physique, tels que l'électromagnétisme. Ils sont également largement utilisés en relativité générale, pour décrire rigoureusement l'espace-temps comme variété courbe quadri-dimensionnelle. Les tenseurs sont également utilisés en géométrie différentielle pour définir sur une variété différentielle les notions géométriques de distance, d'angle et de volume. Cela se fait par le choix d'un tenseur métrique, c'est-à-dire un produit scalaire défini sur l'espace tangent de chaque point. Grâce à ce concept, sont alors définies et étudiées les questions liées à la courbure de la variété. D'autres tenseurs, tels que le tenseur de Riemann et le tenseur de Ricci, sont des outils importants pour cette étude.
  • A tenzor egy matematikai objektum, amely a skalár és vektor fogalom általánosítása. A vektorhoz hasonlóan ábrázolható egy választott koordináta-rendszerben számok mátrixaként, de független a választott vonatkoztatási rendszertől. A tenzorok alkalmazásának különösen nagy jelentősége van a fizikában és a mérnöki tudományokban. Maga a „tenzor” kifejezés is a fizikából jön, először a deformálható testek mechanikájában, az anyagban fellépő feszültségek és nyomások, azaz „tenziók” leírására használták.Bár a tenzorok reprezentálhatók mint többdimenziós tömbök (pl. 3 × 3 × 3-as mátrix) és azok komponensei, a tenzorelmélet lényege, hogy a tenzor mennyiségek bizonyos „abszolút” tulajdonságokkal rendelkeznek (kovariancia és invariancia), különös tekintettel arra, hogy komponenseik hogyan változnak a koordináta transzformációk során.A tenzorok egy igazán absztrakt bevezetése sima sokaságokon a csoportelmélet segítségével történik: a tenzorok olyan mennyiségek, amelyek az önábrázolás direkt szorzatai szerint transzformálódnak (a direkt szorzatban előforduló tényezők száma szerint nevezzük a tenzorokat első-, másod-, harmad- stb. rendűnek). Ezek a direktszorzat-ábrázolások általában nem irreducibilisek, szétesnek több ábrázolásra.
  • Tensore bat matematika eta fisikan hainbat osagai dituen entitate algebraiko bat da. Hautatutako koordenatu sistemarekiko independientea den bektore, eskala eta matrizea osatzen du.Oinarri bektoriala behin haruta tensore baten osagaiak matrize-anitz batek emango dizkigu. Tensorearen ordena bertan dauden konponente guztiak ezbairik gabe zehazteko behar diren indize kopuruak emago dizkigu: tensore eskalar batek 0 ordena izango du; bektore bat 1 ordenako tensore bat da eta hortik gorakoak matrize batekin zehaztu behar dira.
  • En matemàtiques, un tensor és certa classe d'entitat algebraica de diverses components, que generalitza els conceptes de escalar, vector i matriu d'una manera que sigui independent de qualsevol sistema de coordenades escollit. Els tensors són d'especial importància en física. Els tensors poden ser representats per una matriu de components en alguns casos.
  • En matemáticas y en física, un tensor es cierta clase de entidad algebraica de varias componentes, que generaliza los conceptos de escalar, vector y matriz de una manera que sea independiente de cualquier sistema de coordenadas elegido. En adelante utilizaremos el convenio de sumación de Einstein.Una vez elegida una base vectorial, las componentes de un tensor en una base vendrán dadas por una multimatriz. El orden de un tensor será el número de índices necesario para especificar sin ambigüedad una componente de un tensor: un escalar será considerado como un tensor de orden 0; un vector, un tensor de orden 1; y dada una base vectorial, los tensores de segundo orden pueden ser representados por una matriz.
  • 텐서(tensor)는 수학과 물리학에서 서로 약간 다른 의미로 사용되는 개념이다. 수학의 다중선형대수학 및 미분기하학 등의 분야에서 텐서는 간단히 말하면 다중선형함수이다. 텐서장이란 기하학적 공간의 각 점마다 위 의미의 텐서가 하나씩 붙어 있는 것을 가리키는데, 물리학과 공학 등에서는 텐서장을 단순히 '텐서'라 부르는 경우도 많다.물리학에서는 자연현상을 설명하기 위해 거의 필수적으로 좌표계를 도입해서 시간과 공간에 숫자를 부여하고 이 숫자들 간의 관계로 법칙을 설명한다. 물리학의 거의 모든것들이 이런 공간과 시간의 개념이 없이는 설명되기 힘들다는 걸 알 수 있다. 시공간 개념과 아무 관계가 없어보이는 것들(전하량, 질량 등)도 곰곰히 생각해보면 그 양이나 효과를 측정하거나 이해하기 위해 시간에 따라 공간을 어떻게 이동하는지, 즉 가속도가 생기는지 위치가 변하는지 등으로 특성을 파악한다는 것을 알 수 있다. 하지만 이러한 좌표계나 단위(unit: SI 단위계 혹은 cgs 단위계 같은), 척도(scale)를 도입하는 방법이 딱 한가지로 정해져 있는 것이 아니다. 물리법칙이란 것은 우리가 어떠한 좌표들을 도입하더라도 바뀌거나 하는 것이 아니기 때문에 도입되는 좌표와 무관하게 물리법칙을 기술할 필요성이 있다. 이처럼 도입된 좌표와 무관하게 유일무이하게 자연현상을 기술하기 위해 도입된 개념이 텐서이다.
  • Een tensor is een begrip uit de lineaire algebra dat veelvuldige toepassingen heeft in de differentiaalmeetkunde en daardoor ook in de materiaalkunde (vervorming van voorwerpen) en de relativiteitstheorie. Voor een behandeling van tensoren in dat kader, zie tensor (relativiteitstheorie). Tensoren kunnen beschouwd worden als een veralgemening van vectoren en matrices.
  • Tensors are geometric objects that describe linear relations between vectors, scalars, and other tensors. Elementary examples of such relations include the dot product, the cross product, and linear maps. Vectors and scalars themselves are also tensors. A tensor can be represented as a multi-dimensional array of numerical values. The order (also degree) of a tensor is the dimensionality of the array needed to represent it, or equivalently, the number of indices needed to label a component of that array. For example, a linear map can be represented by a matrix (a 2-dimensional array) and therefore is a 2nd-order tensor. A vector can be represented as a 1-dimensional array and is a 1st-order tensor. Scalars are single numbers and are thus 0th-order tensors.Tensors are used to represent correspondences between sets of geometric vectors. For example, the Cauchy stress tensor T takes a direction v as input and produces the stress T(v) on the surface normal to this vector for output thus expressing a relationship between these two vectors, shown in the figure (right).Because they express a relationship between vectors, tensors themselves must be independent of a particular choice of coordinate system. Finding the representation of a tensor in terms of a coordinate basis results in an organized multidimensional array representing the tensor in that basis or frame of reference. The coordinate independence of a tensor then takes the form of a "covariant" transformation law that relates the array computed in one coordinate system to that computed in another one. The precise form of the transformation law determines the type (or valence) of the tensor.Tensors are important in physics because they provide a concise mathematical framework for formulating and solving physics problems in areas such as elasticity, fluid mechanics, and general relativity. Tensors were first conceived by Tullio Levi-Civita and Gregorio Ricci-Curbastro, who continued the earlier work of Bernhard Riemann and Elwin Bruno Christoffel and others, as part of the absolute differential calculus. The concept enabled an alternative formulation of the intrinsic differential geometry of a manifold in the form of the Riemann curvature tensor.
  • Tensor, wielkość tensorowa, gęstość tensorowa, obiekt geometryczny, pole tensorowe – obiekt matematyczny będący uogólnieniem pojęcia wektora.Zbiór wszystkich tensorów wraz z odpowiednimi działaniami nazywamy przestrzenią tensorową. Przestrzeń tensorowa jest sumą prostą przeliczalnej liczby przestrzeni liniowych.Tensory, podobnie jak wektory mogą być swobodne, zaczepione oraz można rozważać pola tensorowe.
  • テンソル(独,英: Tensor)とは、線形的な量または線形的な幾何概念を一般化したもので、基底を選べば、多次元の配列として表現できるようなものである。しかし、テンソル自身は、特定の表示系によらないで定まる対象である。個々のテンソルについて、対応する量を記述するのに必要な配列の添字の組の数は、そのテンソルの階数とよばれる。例えば、質量や温度などのスカラー量は階数0のテンソルだと理解される。同様にして力や運動量などのベクトル的な量は階数1のテンソルであり、力や加速度ベクトルの間の異方的な関係などをあらわす線型変換は階数2のテンソルで表される。物理学や工学においてしばしば「テンソル」と呼ばれているものは、実際には位置や時刻を引数としテンソル量を返す関数である「テンソル場」であることに注意しなければならない。いずれにせよテンソル場の理解のためにはテンソルそのものの概念の理解が不可欠である。この記事ではテンソルの考え方について、あまり技術的すぎない紹介をする。
dbpedia-owl:thumbnail
dbpedia-owl:wikiPageExternalLink
dbpedia-owl:wikiPageID
  • 31233 (xsd:integer)
dbpedia-owl:wikiPageLength
  • 35760 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 140 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 106200860 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
prop-fr:wikibooks
  • Calcul tensoriel
prop-fr:wikibooksTitre
  • Calcul tensoriel
  • Calcul tensoriel
dcterms:subject
rdfs:comment
  • En mathématiques, plus précisément en algèbre multilinéaire et en géométrie différentielle, un tenseur désigne un objet très général, dont la valeur s'exprime dans un espace vectoriel. On peut l'utiliser entre autres pour représenter des applications multilinéaires ou des multivecteurs.
  • En matemàtiques, un tensor és certa classe d'entitat algebraica de diverses components, que generalitza els conceptes de escalar, vector i matriu d'una manera que sigui independent de qualsevol sistema de coordenades escollit. Els tensors són d'especial importància en física. Els tensors poden ser representats per una matriu de components en alguns casos.
  • Een tensor is een begrip uit de lineaire algebra dat veelvuldige toepassingen heeft in de differentiaalmeetkunde en daardoor ook in de materiaalkunde (vervorming van voorwerpen) en de relativiteitstheorie. Voor een behandeling van tensoren in dat kader, zie tensor (relativiteitstheorie). Tensoren kunnen beschouwd worden als een veralgemening van vectoren en matrices.
  • Tensor, wielkość tensorowa, gęstość tensorowa, obiekt geometryczny, pole tensorowe – obiekt matematyczny będący uogólnieniem pojęcia wektora.Zbiór wszystkich tensorów wraz z odpowiednimi działaniami nazywamy przestrzenią tensorową. Przestrzeń tensorowa jest sumą prostą przeliczalnej liczby przestrzeni liniowych.Tensory, podobnie jak wektory mogą być swobodne, zaczepione oraz można rozważać pola tensorowe.
  • テンソル(独,英: Tensor)とは、線形的な量または線形的な幾何概念を一般化したもので、基底を選べば、多次元の配列として表現できるようなものである。しかし、テンソル自身は、特定の表示系によらないで定まる対象である。個々のテンソルについて、対応する量を記述するのに必要な配列の添字の組の数は、そのテンソルの階数とよばれる。例えば、質量や温度などのスカラー量は階数0のテンソルだと理解される。同様にして力や運動量などのベクトル的な量は階数1のテンソルであり、力や加速度ベクトルの間の異方的な関係などをあらわす線型変換は階数2のテンソルで表される。物理学や工学においてしばしば「テンソル」と呼ばれているものは、実際には位置や時刻を引数としテンソル量を返す関数である「テンソル場」であることに注意しなければならない。いずれにせよテンソル場の理解のためにはテンソルそのものの概念の理解が不可欠である。この記事ではテンソルの考え方について、あまり技術的すぎない紹介をする。
  • A tenzor egy matematikai objektum, amely a skalár és vektor fogalom általánosítása. A vektorhoz hasonlóan ábrázolható egy választott koordináta-rendszerben számok mátrixaként, de független a választott vonatkoztatási rendszertől. A tenzorok alkalmazásának különösen nagy jelentősége van a fizikában és a mérnöki tudományokban.
  • Tensors are geometric objects that describe linear relations between vectors, scalars, and other tensors. Elementary examples of such relations include the dot product, the cross product, and linear maps. Vectors and scalars themselves are also tensors. A tensor can be represented as a multi-dimensional array of numerical values.
  • En matemáticas y en física, un tensor es cierta clase de entidad algebraica de varias componentes, que generaliza los conceptos de escalar, vector y matriz de una manera que sea independiente de cualquier sistema de coordenadas elegido. En adelante utilizaremos el convenio de sumación de Einstein.Una vez elegida una base vectorial, las componentes de un tensor en una base vendrán dadas por una multimatriz.
  • Tensore bat matematika eta fisikan hainbat osagai dituen entitate algebraiko bat da. Hautatutako koordenatu sistemarekiko independientea den bektore, eskala eta matrizea osatzen du.Oinarri bektoriala behin haruta tensore baten osagaiak matrize-anitz batek emango dizkigu.
  • 텐서(tensor)는 수학과 물리학에서 서로 약간 다른 의미로 사용되는 개념이다. 수학의 다중선형대수학 및 미분기하학 등의 분야에서 텐서는 간단히 말하면 다중선형함수이다. 텐서장이란 기하학적 공간의 각 점마다 위 의미의 텐서가 하나씩 붙어 있는 것을 가리키는데, 물리학과 공학 등에서는 텐서장을 단순히 '텐서'라 부르는 경우도 많다.물리학에서는 자연현상을 설명하기 위해 거의 필수적으로 좌표계를 도입해서 시간과 공간에 숫자를 부여하고 이 숫자들 간의 관계로 법칙을 설명한다. 물리학의 거의 모든것들이 이런 공간과 시간의 개념이 없이는 설명되기 힘들다는 걸 알 수 있다. 시공간 개념과 아무 관계가 없어보이는 것들(전하량, 질량 등)도 곰곰히 생각해보면 그 양이나 효과를 측정하거나 이해하기 위해 시간에 따라 공간을 어떻게 이동하는지, 즉 가속도가 생기는지 위치가 변하는지 등으로 특성을 파악한다는 것을 알 수 있다.
rdfs:label
  • Tenseur
  • Cálculo tensorial
  • Tensor
  • Tensor
  • Tensor
  • Tensor
  • Tensor
  • Tensor
  • Tensore
  • Tensore
  • Tensör
  • Tenzor
  • Tenzor
  • Тензор
  • Тензор
  • テンソル
  • 텐서
owl:sameAs
http://www.w3.org/ns/prov#wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbpedia-owl:wikiPageRedirects of
is dbpedia-owl:wikiPageWikiLink of
is foaf:primaryTopic of