Le taux de combustion, ou combustion massique, est un facteur qui permet de convertir la masse d'un combustible en énergie.

PropertyValue
dbpedia-owl:abstract
  • Le taux de combustion, ou combustion massique, est un facteur qui permet de convertir la masse d'un combustible en énergie.
  • 燃焼度(ねんしょうど)とは、核燃料の消費の度合いを示す数値で、単位は重量あたりの熱出力(MWd/t)である。すなわち核燃料の燃焼度は原子炉で使用される期間が長いほど核燃料が消費されるため高い数値を示す。
  • Unter dem Begriff Abbrand versteht man in der Kernenergietechnik die Menge an Wärmeenergie, die pro Masseneinheit in einem Brennelement erzeugt wurde. Der Abbrand wird meist in Gigawatt-Tagen pro Tonne Schwermetall (GWd/t SM) ausgedrückt. Daneben sind FIMA (engl.: fissions per initial metal atom) und FIFA (engl.: fission per initial fissile atom), meist angegeben in Prozent, gebräuchlich: Würden in einem Brennstoff aus 3,3 % 235U und 96,7 % 238U soviele Spaltungen stattfinden, wie 235U-Atome anfänglich vorhanden waren, wäre der Abbrand 3,3 % FIMA oder 100 % FIFA. Eine Angabe in FIFA eignet sich besonders, um Brennstoffabbrände unterschiedlichen anfänglichen Anreicherungsgrades zu vergleichen.Der aktuell vorliegende Abbrand ist auch ein Maß dafür, wie stark der Brennstoff bereits verbraucht ist. Der Verbrauch kommt dadurch zustande, dass im Laufe der Zeit durch die Kernspaltungen die Konzentration spaltbarer 235U-Kerne in den Brennelementen immer mehr abnimmt. Ein Teil des Konzentrationsabfalls wird durch die Entstehung von spaltbarem 239Pu kompensiert. Kurz gesagt: Durch die Spaltung von 235U-Kernen wird der Vorrat an 235U in den Brennelementen verbraucht – „er brennt ab“. Außerdem hat auch die Entstehung von Spaltprodukten Einfluss auf die Reaktivität des Reaktorkernes. Hierbei sind insbesondere Spaltprodukte von Bedeutung, die einen hohen Einfang-Wirkungsquerschnitt für Neutronen haben. Zu nennen sind in diesem Zusammenhang vor allem das Edelgas Xenon und das Metall Samarium.Heute werden in Leichtwasserreaktoren durchschnittliche Abbrände von etwa 40–55 GWd/t SM, erreicht, aus Schweizer Anlagen sind Spitzenabbrände einzelner Elemente bis 105 GWd/t SM belegt. Die Brennelementehersteller streben für Druckwasserreaktoren mittels modifizierter, hochabbrandfähiger Brennelemente eine Erhöhung des durchschnittlichen Abbrandes bis 75 GWd/t SM an. Noch höhere Abbrände erreicht man derzeit in Hochtemperaturreaktoren und in Brutreaktoren. In Magnox-Reaktoren und in den kanadischen Candu-Reaktoren sind die Entladeabbrände ausgedrückt in GWd/t wegen der geringeren Anfangsanreicherung naturgemäß niedriger, in der Einheit FIFA speziell bei Candu-Reaktoren jedoch höher als bei konventionellen Reaktoren.Die Forschung verspricht sich von neuen Reaktorkonzepten stark erhöhte Abbrandraten bis zu 500 GWd/t SM.
  • In nuclear power technology, burnup (also known as fuel utilization) is a measure of how much energy is extracted from a primary nuclear fuel source. It is measured both as the fraction of fuel atoms that underwent fission in %FIMA (fissions per initial metal atom) and as the actual energy released per mass of initial fuel in gigawatt-days/metric ton of heavy metal (GWd/tHM), or similar units.
  • Nella fisica dei reattori nucleari, il burnup o consumo è una delle misure dell'irraggiamento, definita come il calore prodotto da una certa massa di combustibile indirettamente per fissione di una parte dei suoi nuclei. L'unità di misura più utilizzata dai costruttori è il megawatt-giorno per tonnellata di combustibile che espresso in simboli è MWd/t, per ragioni storiche di retaggio bellico dato che il consumo completo per l'U235 puro è circa 1 GWd/t.Ad esempio, considerando di volere caricare un reattore nucleare con un chilogrammo di uranio a basso arricchimento, esso va immesso nella maggior parte dei rattori sotto forma di biossido: per comprendere l'ossigeno bisogna moltiplicare per il rapporto fra le masse molari di biossido e di uranio (238+32)/238, ottenendo una massa combustibile di 1.134 kg. Se al suo scaricamento corriponde un consumo di 10GWd/t, dovrà aver prodotto non solo 24000MWh bensì 27216MWh termici (di cui circa il 30% viene trasformata in elettricità a seconda del rendimento del ciclo secondario). Dal consumo si può risalire alla frazione di fissioni avvenute, consoscendo l'energia media di ogni fissione (circa 200MeV per i reattori termici ad acqua), quindi alla fluenza neutronica conoscendo la sezione di fissione media del combustibile.L'aumento del consumo ha effetti benefici sull'economia dell'intera centrale nucleare: nei progetti dei reattori ad acqua leggera, l'impianto deve essere fermato per la ricarica del combustibile, quindi un alto consumo diminuisce il numero di fermate dell'impianto e permette di aumentare il fattore di carico della centrale, attualmente a circa il 90% (92% negli USA e 93% in Finlandia). Si riduce, quindi, anche il numero di elementi di combustibile da riprocessare o altrimenti da smaltire come scorie in un dato lasso di tempo, ma aumenta di contro la presenza di prodotti di fissione, plutonio ed attinidi per ciascun elemento di combustibile estratto, rendendo più radiotossiche le scorie e dunque più difficile il trattamento e/o lo stoccaggio. A parità di consumo non cambia però, la quantità totale di prodotti di fissione generati, visto che il consumo è direttamente proporzionale al numero di fissioni avvenute.D'altra parte un maggiore consumo comporta un maggiore irraggiamento per i materiali strutturali che abbassa progressivamente le loro tenuta meccanica principalmente per infragilimento da radiazione, che si sovrappone allo scorrimento viscoso e alla corrosione con spesso effetti nonlineari di amplificazione reciproca. Nei reattori ad acqua per esempio il fattore limitante per la durata della ricarica è il margine sulla temperatura di transizione duttile-fragile della guaina, e quello limitante per la vita dell'impianto la temperatura di transizione duttile-fragile del recipiente, a meno che sia economico sostituirlo. Il consumo è insomma un indice del livello tecnologico del reattore intero, e non tanto del combustibile in sé.Come ultimo vantaggio all'aumentare del consumo vi è una minore possibilità di proliferazione nucleare, visto che il plutonio prodotto nel reattore è in gran parte consumato già durante il funzionamento (circa 1/3 negli attuali LWR e circa la metà nei CANDU), e quello che esce è troppo ricco di plutonio-240 (che tende a fissionarsi spontaneamente prima di raggiungere la massa critica, e deve essere in quantità inferiore all'8%) e successivi per essere usato direttamente come ordigno nucleare. Reattori utilizzati per produrre plutonio per le bombe hanno, infatti, bassissimi burnup (circa 100 kWd/kg) per non consentire al plutonio-239 direttamente prodotto dalla cattura neutronica da parte dell'U238 di catturare altri neutroni e trasformarsi negli isotopi del plutonio più pesanti. Il plutonio uscente da un reattore commerciale è molto meno "puro", ad esempio, da un PWR a 53GWd/t, è composto dal 50.3% di Pu-239 ed il 24.1% di Pu-240, rendendolo quindi non usabile per ordigni nucleari.I reattori ad acqua leggera di I generazione avevano dei burnup fino a circa 30GWd/t, quelli attualmente in funzione di II sono sui 45GWd/t, mentre i reattori attuali di III Generazione hanno burnup che vanno dai 60 ai 70GWd/t. Nei reattori veloci di quarta generazione si vogliono superare i 200GWd/t con l'impiego di materiali nuovi, in particolare con acciai per alte temperature derivati dalsettore convenzionale o con acciai per alti irraggiamenti derivati dal setore della fusione nucleare.
  • En el campo de la tecnología de la energía nuclear, el grado de combustión (en inglés: burnup) (también conocido como utilización del combustible) es una medida de cuanta energía es extraída de una fuente primaria de combustible nuclear. Es medida tanto como una fracción de los átomos de combustible que se fisionaron en %FIMA (fissions per initial metal atom, en castellano: fisiones por átomo metálico inicial) como por la energía realmente liberada por la masa inicial del combustible en gigawatts-días/tonelada métrica de metal pesado (GWd/MTHM), o una unidad similar.
dbpedia-owl:wikiPageExternalLink
dbpedia-owl:wikiPageID
  • 1791997 (xsd:integer)
dbpedia-owl:wikiPageLength
  • 13892 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 84 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 99794511 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • Le taux de combustion, ou combustion massique, est un facteur qui permet de convertir la masse d'un combustible en énergie.
  • 燃焼度(ねんしょうど)とは、核燃料の消費の度合いを示す数値で、単位は重量あたりの熱出力(MWd/t)である。すなわち核燃料の燃焼度は原子炉で使用される期間が長いほど核燃料が消費されるため高い数値を示す。
  • In nuclear power technology, burnup (also known as fuel utilization) is a measure of how much energy is extracted from a primary nuclear fuel source. It is measured both as the fraction of fuel atoms that underwent fission in %FIMA (fissions per initial metal atom) and as the actual energy released per mass of initial fuel in gigawatt-days/metric ton of heavy metal (GWd/tHM), or similar units.
  • Nella fisica dei reattori nucleari, il burnup o consumo è una delle misure dell'irraggiamento, definita come il calore prodotto da una certa massa di combustibile indirettamente per fissione di una parte dei suoi nuclei.
  • Unter dem Begriff Abbrand versteht man in der Kernenergietechnik die Menge an Wärmeenergie, die pro Masseneinheit in einem Brennelement erzeugt wurde. Der Abbrand wird meist in Gigawatt-Tagen pro Tonne Schwermetall (GWd/t SM) ausgedrückt.
  • En el campo de la tecnología de la energía nuclear, el grado de combustión (en inglés: burnup) (también conocido como utilización del combustible) es una medida de cuanta energía es extraída de una fuente primaria de combustible nuclear.
rdfs:label
  • Taux de combustion
  • Abbrand (Kerntechnik)
  • Burnup
  • Burnup
  • Grado de combustión nuclear
  • 燃焼度 (原子力)
owl:sameAs
http://www.w3.org/ns/prov#wasDerivedFrom
foaf:isPrimaryTopicOf
is dbpedia-owl:wikiPageRedirects of
is dbpedia-owl:wikiPageWikiLink of
is foaf:primaryTopic of