En algèbre linéaire, un sous-espace vectoriel d'un espace vectoriel E est une partie non vide F de E stable par combinaisons linéaires. Cette stabilité s'exprime par :la somme de deux vecteurs de F appartient à F ;le produit d'un vecteur de F par un scalaire appartient à F.Muni des lois induites, F est alors un espace vectoriel. L'intersection d'une famille non vide de sous-espaces de E est un sous-espace de E.

PropertyValue
dbpedia-owl:abstract
  • En algèbre linéaire, un sous-espace vectoriel d'un espace vectoriel E est une partie non vide F de E stable par combinaisons linéaires. Cette stabilité s'exprime par :la somme de deux vecteurs de F appartient à F ;le produit d'un vecteur de F par un scalaire appartient à F.Muni des lois induites, F est alors un espace vectoriel. L'intersection d'une famille non vide de sous-espaces de E est un sous-espace de E. La réunion d'une famille non vide de sous-espaces n'en est généralement pas un ; le sous-espace engendré par cette réunion est la somme de cette famille.
  • A lineáris altér a matematika, közelebbről a lineáris algebra egyik fontos fogalma. Egy vektortér, mint struktúra bizonyos tulajdonságokkal ellátott részhalmazára akkor mondjuk, hogy lineáris altér a vektortérben, ha teljesíti az ugyanazon vektor- illetve skalárral való szorzás műveleti zártságának követelményét.
  • Een lineaire deelruimte is in de lineaire algebra een deelverzameling van een vectorruimte die, bij dezelfde optelling en scalaire vermenigvuldiging als in die ruimte zelf, ook een vectorruimte is. De deelverzameling W van een vectorruimte V is een lineaire deelruimte van V als de optelling en scalaire vermenigvuldiging van V inwendig zijn in W. Dit wordt verwoord in de volgende stelling.
  • 数学、とくに線型代数学において、線型部分空間(せんけいぶぶんくうかん、linear subspace)または部分ベクトル空間(ぶぶんベクトルくうかん、vector subspace)とは、ベクトル空間の部分集合で、それ自身が元の空間の演算により線型空間になっているもののことである。ベクトル空間のある部分集合が、それ自身ある演算に関してベクトル空間の構造を持っていたとしても、その演算がもとの空間の演算でないならば部分線型空間とは呼ばない、ということに注意されたい。また、文脈により紛れの恐れのない場合には、線型部分空間のことを単に部分空間と呼ぶことがある。
  • En álgebra lineal, un subespacio vectorial es el subconjunto de un espacio vectorial, que satisface por sí mismo la definición de espacio vectorial con las mismas operaciones que V..
  • Ein Untervektorraum, Teilvektorraum, linearer Unterraum oder linearer Teilraum ist in der Mathematik eine Teilmenge eines Vektorraums, die selbst wieder einen Vektorraum darstellt. Dabei werden die Vektorraumoperationen Vektoraddition und Skalarmultiplikation von dem Ausgangsraum auf den Untervektorraum vererbt. Jeder Vektorraum enthält sich selbst und den Nullvektorraum als triviale Untervektorräume.Jeder Untervektorraum ist das Erzeugnis einer linear unabhängigen Teilmenge von Vektoren des Ausgangsraums. Die Summe und der Durchschnitt zweier Untervektorräume ergibt wieder einen Untervektorraum, dessen Dimension über die Dimensionsformel ermittelt werden kann. Jeder Untervektorraum besitzt mindestens einen Komplementärraum, sodass der Ausgangsraum die direkte Summe aus dem Untervektorraum und seinem Komplement ist. Weiter kann jedem Untervektorraum ein Faktorraum zugeordnet werden, der dadurch entsteht, dass alle Elemente des Ausgangsraums entlang des Untervektorraums parallelprojiziert werden. Untervektorräume werden in der linearen Algebra unter anderem dazu verwendet, Kern und Bild von linearen Abbildungen, Lösungsmengen von linearen Gleichungen und Eigenräume von Eigenwertproblemen zu charakterisieren. In der Funktionalanalysis werden insbesondere Untervektorräume von Hilberträumen, Banachräumen und Dualräumen untersucht. Untervektorräume besitzen vielfältige Anwendungen, beispielsweise bei numerischen Lösungsverfahren für große lineare Gleichungssysteme und für partielle Differentialgleichungen, bei Optimierungsproblemen, in der Kodierungstheorie und in der Signalverarbeitung.
  • Azpiespazio bektoriala kontzeptu garrantzitsua da aljebran eta matematikako hainbat arlotan. Testuinguruaren arabera azpiespazio ere deitu ohi zaio beste mota batzuetako azpiespazioekin nahastu ezin denean. Orokorrean, U edo V ikurrak erabiltzen dira azpiespazio bektorialari buruz aritzeko; batzuetan A, B edota W ere ikus daitezke.
  • In linear algebra and related fields of mathematics, a linear subspace (or vector subspace) is a vector space that is a subset of some other (higher-dimension) vector space. A linear subspace is usually called simply a subspace when the context serves to distinguish it from other kinds of subspaces.
dbpedia-owl:wikiPageID
  • 188411 (xsd:integer)
dbpedia-owl:wikiPageInterLanguageLink
dbpedia-owl:wikiPageLength
  • 9578 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 57 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 109303785 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • En algèbre linéaire, un sous-espace vectoriel d'un espace vectoriel E est une partie non vide F de E stable par combinaisons linéaires. Cette stabilité s'exprime par :la somme de deux vecteurs de F appartient à F ;le produit d'un vecteur de F par un scalaire appartient à F.Muni des lois induites, F est alors un espace vectoriel. L'intersection d'une famille non vide de sous-espaces de E est un sous-espace de E.
  • A lineáris altér a matematika, közelebbről a lineáris algebra egyik fontos fogalma. Egy vektortér, mint struktúra bizonyos tulajdonságokkal ellátott részhalmazára akkor mondjuk, hogy lineáris altér a vektortérben, ha teljesíti az ugyanazon vektor- illetve skalárral való szorzás műveleti zártságának követelményét.
  • Een lineaire deelruimte is in de lineaire algebra een deelverzameling van een vectorruimte die, bij dezelfde optelling en scalaire vermenigvuldiging als in die ruimte zelf, ook een vectorruimte is. De deelverzameling W van een vectorruimte V is een lineaire deelruimte van V als de optelling en scalaire vermenigvuldiging van V inwendig zijn in W. Dit wordt verwoord in de volgende stelling.
  • 数学、とくに線型代数学において、線型部分空間(せんけいぶぶんくうかん、linear subspace)または部分ベクトル空間(ぶぶんベクトルくうかん、vector subspace)とは、ベクトル空間の部分集合で、それ自身が元の空間の演算により線型空間になっているもののことである。ベクトル空間のある部分集合が、それ自身ある演算に関してベクトル空間の構造を持っていたとしても、その演算がもとの空間の演算でないならば部分線型空間とは呼ばない、ということに注意されたい。また、文脈により紛れの恐れのない場合には、線型部分空間のことを単に部分空間と呼ぶことがある。
  • En álgebra lineal, un subespacio vectorial es el subconjunto de un espacio vectorial, que satisface por sí mismo la definición de espacio vectorial con las mismas operaciones que V..
  • Azpiespazio bektoriala kontzeptu garrantzitsua da aljebran eta matematikako hainbat arlotan. Testuinguruaren arabera azpiespazio ere deitu ohi zaio beste mota batzuetako azpiespazioekin nahastu ezin denean. Orokorrean, U edo V ikurrak erabiltzen dira azpiespazio bektorialari buruz aritzeko; batzuetan A, B edota W ere ikus daitezke.
  • In linear algebra and related fields of mathematics, a linear subspace (or vector subspace) is a vector space that is a subset of some other (higher-dimension) vector space. A linear subspace is usually called simply a subspace when the context serves to distinguish it from other kinds of subspaces.
  • Ein Untervektorraum, Teilvektorraum, linearer Unterraum oder linearer Teilraum ist in der Mathematik eine Teilmenge eines Vektorraums, die selbst wieder einen Vektorraum darstellt. Dabei werden die Vektorraumoperationen Vektoraddition und Skalarmultiplikation von dem Ausgangsraum auf den Untervektorraum vererbt.
rdfs:label
  • Sous-espace vectoriel
  • Azpiespazio bektorial
  • Lineaire deelruimte
  • Linear subspace
  • Lineáris altér
  • Podprzestrzeń liniowa
  • Sottospazio vettoriale
  • Subespacio vectorial
  • Subespai vectorial
  • Subespaço vetorial
  • Untervektorraum
  • Vektorový podprostor
  • Векторно подпространство
  • 線型部分空間
owl:sameAs
http://www.w3.org/ns/prov#wasDerivedFrom
foaf:isPrimaryTopicOf
is dbpedia-owl:wikiPageDisambiguates of
is dbpedia-owl:wikiPageWikiLink of
is foaf:primaryTopic of