En mathématiques, plus précisément en algèbre linéaire, deux sous-espaces vectoriels d'un même espace vectoriel sont supplémentaires dans cet espace si tout vecteur de l'espace se décompose de façon unique en une somme de vecteurs de chacun des deux sous-espaces.

PropertyValue
dbpedia-owl:abstract
  • En mathématiques, plus précisément en algèbre linéaire, deux sous-espaces vectoriels d'un même espace vectoriel sont supplémentaires dans cet espace si tout vecteur de l'espace se décompose de façon unique en une somme de vecteurs de chacun des deux sous-espaces. L'existence pour tout vecteur d'une telle décomposition revient à dire que la somme des deux sous-espaces est égale à l'espace tout entier, et l'unicité équivaut à ce que cette somme soit directe (ce qui se caractérise par le fait que l'intersection des deux sous-espaces est réduite au vecteur nul).
dbpedia-owl:wikiPageID
  • 607773 (xsd:integer)
dbpedia-owl:wikiPageLength
  • 9329 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 35 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 109350799 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • En mathématiques, plus précisément en algèbre linéaire, deux sous-espaces vectoriels d'un même espace vectoriel sont supplémentaires dans cet espace si tout vecteur de l'espace se décompose de façon unique en une somme de vecteurs de chacun des deux sous-espaces.
rdfs:label
  • Sous-espace supplémentaire
owl:sameAs
http://www.w3.org/ns/prov#wasDerivedFrom
foaf:isPrimaryTopicOf
is dbpedia-owl:wikiPageDisambiguates of
is dbpedia-owl:wikiPageRedirects of
is dbpedia-owl:wikiPageWikiLink of
is foaf:primaryTopic of