Un semi-conducteur est un matériau qui a les caractéristiques électriques d'un isolant, mais pour lequel la probabilité qu'un électron puisse contribuer à un courant électrique, quoique faible, est suffisamment importante. En d'autres termes, la conductivité électrique d'un semi-conducteur est intermédiaire entre celle des métaux et celle des isolants.

PropertyValue
dbpedia-owl:abstract
  • Un semi-conducteur est un matériau qui a les caractéristiques électriques d'un isolant, mais pour lequel la probabilité qu'un électron puisse contribuer à un courant électrique, quoique faible, est suffisamment importante. En d'autres termes, la conductivité électrique d'un semi-conducteur est intermédiaire entre celle des métaux et celle des isolants.
  • Полупроводни́к — материал, который по своей удельной проводимости занимает промежуточное место между проводниками и диэлектриками и отличается от проводников сильной зависимостью удельной проводимости от концентрации примесей, температуры и воздействия различных видов излучения. Основным свойством полупроводника является увеличение электрической проводимости с ростом температуры.Полупроводниками являются вещества, ширина запрещённой зоны которых составляет порядка нескольких электрон-вольт (эВ). Например, алмаз можно отнести к широкозонным полупроводникам, а арсенид индия — к узкозонным. К числу полупроводников относятся многие химические элементы (германий, кремний, селен, теллур, мышьяк и другие), огромное количество сплавов и химических соединений (арсенид галлия и др.). Почти все неорганические вещества окружающего нас мира — полупроводники. Самым распространённым в природе полупроводником является кремний, составляющий почти 30 % земной коры.В зависимости от того, отдаёт ли примесной атом электрон или захватывает его, примесные атомы называют донорными или акцепторными. Характер примеси может меняться в зависимости от того, какой атом кристаллической решётки она замещает, в какую кристаллографическую плоскость встраивается.Проводимость полупроводников сильно зависит от температуры. Вблизи температуры абсолютного нуля полупроводники имеют свойства диэлектриков.
  • Semicondutores são sólidos geralmente cristalinos de condutividade elétrica intermediária entre condutores e isolantes. Os semicondutores são, quando puros e cristalinos, a temperaturas muito baixas, excelentes isolantes, ao contrário do comportamento observado nos metais. Contudo, a condutividade dos semicondutores puros (intrínsecos) aumenta significativamente com a temperatura. Usualmente, à temperatura ambiente, exibem ainda baixa condutividade, sendo por tal bons isolantes quando em condições de manuseio. Tornam-se condutores se consideravelmente aquecidos, contudo.Os materiais semicondutores podem ser tratados quimicamente de diferentes maneiras de forma a tornarem-se tão condutores quanto o necessário à temperatura ambiente (dopagem). A combinação de semicondutores com diferentes tipos de dopagens faz emergir propriedades elétricas não observáveis quando separados, propriedades muito úteis sobretudo no controle de correntes elétricas.Quando intrínsecos, possuem em sua composição tipicamente elemento ou combinação de elementos que lhes confiram uma estrutura covalente com todos os orbitais eletrônicos ligantes de todos os átomos sempre completos. Não há por tal portadores de carga elétrica estruturalmente livres quando puros. Quimicamente viáveis há os semicondutores do grupo IV (ver tabela periódica), como os de germânico ou, com vantagens à temperatura ambiente, os de silício; do grupo III-V, com destaque para o arseneto de gálio, nitreto de gálio, sulfeto de cádmio, arseneto de índio, e certamente outros com estequiometrias mais sofisticadas. Os elementos no composto devem aparecer sempre dispostos em estrutura cristalina sem falhas ou imperfeições, o que justifica o emprego de técnicas de produção elaboradas e especialmente desenvolvidas para garantir tal simetria. A dopagem é feita utilizando-se elementos diferentes dos que integram a rede semicondutora, usualmente os elementos da coluna III (para semicondutores tipo P) ou da coluna V (para semicondutores tipo N). É contudo também comum o emprego de elementos de outras colunas, incluso a coluna IV, tanto para a obtenção de semicondutores do tipo P como do tipo N. Os semicondutores são em muito pontos semelhantes aos materiais cerâmicos, podendo ser considerados como uma subclasse da cerâmica. Seu emprego é importante na fabricação de componentes eletrônicos tais como diodos, transístores e outros de diversos graus de complexidade tecnológica, microprocessadores, e nanocircuitos usados em nanotecnologia. Portanto atualmente o elemento semicondutor é primordial na indústria eletrônica e confecção de seus componentes.
  • Semiconductor es un elemento que se comporta como un conductor o como un aislante dependiendo de diversos factores, como por ejemplo el campo eléctrico o magnético, la presión, la radiación que le incide, o la temperatura del ambiente en el que se encuentre. Los elementos químicos semiconductores de la tabla periódica se indican en la tabla adjunta.El elemento semiconductor más usado es el silicio, el segundo el germanio, aunque idéntico comportamiento presentan las combinaciones de elementos de los grupos 12 y 13 con los de los grupos 16 y 15 respectivamente (GaAs, PIn, AsGaAl, TeCd, SeCd y SCd). Posteriormente se ha comenzado a emplear también el azufre. La característica común a todos ellos es que son tetravalentes, teniendo el silicio una configuración electrónica s²p².
  • Yarı iletken madde, elektrik iletkenliği bakımından, iletken ile yalıtkan arasında kalan maddelerdir.Normal durumda yalıtkan olan bu maddeler ısı, ışık, manyetik etki veya elektriksel gerilim gibi dış etkiler uygulandığında bir miktar değerlik elektronlarını serbest hale geçirerek iletken duruma gelirler. Uygulanan bu dış etki veya etkiler ortadan kaldırıldığında ise yalıtkan duruma geri dönerler. Bu özellik elektronik alanında yoğun olarak kullanılmalarını sağlamıştır.Yarı iletkenlerin değerlik yörüngelerinde dört elektron bulunur. Bu yüzden yarı iletkenler iletkenlerle yalıtkanlar arasında yer almaktadır. Elektronik elemanlarda en yaygın olarak kullanılan yarı iletkenler germanyum ve silisyum elementleridir. Yarı iletken malzemeler; iletkenlerden 10-10 defa az iletken, yalıtkanlara göre 1014 defa daha fazla iletkenlerdir.Tüm yarı iletkenler son yörüngelerindeki elektron sayısını sekize çıkarma çabasındadırlar. Bu nedenle saf bir germanyum elementinde komşu atomlar son yörüngelerindeki elektronları kovalent bağ ile birleştirerek ortak kullanırlar. Atomlar arasındaki bu kovalent bağ germanyum elementine kristal özelliğini kazandırır. Silisyum da özellik olarak germanyum ile hemen hemen aynıdır.Yarı iletkenli elektronik devre elemanlarında daha çok silisyum kullanılır. Silisyum ve germanyum devre elemanı üretiminde saf olarak kullanılmaz. Bu maddelere katkı katılarak değerlik bandı enerji seviyesi yukarıya veya iletkenlik bandı enerji seviyesi aşağıya çekilir. Değerlik bandının yukarı çekildiği yarı iletkenlere P tipi yarı iletken, iletkenlik bandının aşağıya çekildiği yarı iletkenlere ise N tipi yarı iletken denir. P tipi yarı iletkende yüklü boşluk derişimi, N tipi yarı iletkende ise elektron derişimi göreli olarak daha yüksektir.Ayrıca günümüzde Güneş enerjisini elektrik enerjisine çevirmede yarı iletkenlerden azami ölçüde faydalanılır. Zira güneşten gelen foton tanecikleri yarı iletkenlerin atomik yapısındaki zayıf moleküler bağlar sayesinde elektronların serbest kalmalarını sağlarlar ve bu da diğer bir yarı iletken yapıya elektron akışını mümkün kılar. Günümüzde kulanılan bazı hesap makineleri, bu yapı ile çalışmaktadır.Yarı iletkenler germanyum, silisyum, selenyum gibi elementler olabildiği gibi; bakır oksit, galyum arsenid, indiyum fosfür, kurşun sülfür gibi bileşikler de olabilir.
  • Félvezetőknek nevezzük azokat az anyagokat, amelyek fajlagos ellenállása a vezetők és a szigetelők közé esik. A félvezetők fajlagos elektromos vezetése közönséges hőmérsékleten 10-9 – 103 1/Ωcm, azaz gyengén vezetik az áramot és nem jók szigetelőnek sem. Nagyon alacsony hőmérsékleten a félvezető szigetelőként viselkedik, de szobahőmérsékleten sajátvezetésük van. A másik jellemző tulajdonságuk az ellenállásuk hőfokfüggése. A félvezetők ellenállása a hőmérséklettel exponenciálisan csökken. Tehát elektromos ellenállásuk negatív hőmérsékleti együtthatóval (NTC) rendelkezik.
  • Semikonduktor adalah sebuah bahan dengan konduktivitas listrik yang berada di antara insulator (isolator) dan konduktor. Semikonduktor disebut juga sebagai bahan setengah penghantar listrik. Suatu semikonduktor bersifat sebagai insulator jika tidak diberi arus listrik dengan cara dan besaran arus tertentu, namun pada temperatur, arus tertentu, tatacara tertentu dan persyaratan kerja semikonduktor berfungsi sebagai konduktor, misal sebagai penguat arus, penguat tegangan dan penguat daya. Untuk menggunakan suatu semikonduktor supaya bisa berfungsi harus tahu spefikasi dan karakter semikonduktor itu, jika tidak memenuhi syarat operasinya maka akan tidak berfungsi dan rusak. Bahan semikonduktor yang sering digunakan adalah silikon, germanium, dan gallium arsenide. Semikonduktor sangat berguna dalam bidang elektronik, karena konduktansinya yang dapat diubah-ubah dengan menyuntikkan materi lain (biasa disebut pendonor elektron).Untuk informasi bagaimana semikonduktor digunakan sebagai alat elektronik, lihat alat semikonduktor.
  • Un semiconductor és un material que es comporta com un aïllant a molt baixa temperatura, però que presenta certa conductivitat elèctrica a temperatura ambient essent possible de controlar aquesta conductivitat per mitjà de l'addició d'impureses. No s'ha definit clarament com diferenciar un semiconductor i un aïllant, però es pot dir que un semiconductor és un aïllant amb la banda electrònica de conducció prou poblada a temperatura ambient. Els semiconductors presenten una resistivitat elèctrica a mig camí entre la dels conductors i la dels aïllants, i aquesta resistivitat pot variar amb la presència d'un camp elèctric extern. En un conductor metàl·lic el corrent elèctric és provocat per un flux d'electrons mentre que a un semiconductor el corrent pot ser tant a causa d'un flux d'electrons com de forats de l'estructura electrònica del material.Els dispositius fabricats a partir dels semiconductors són la base de l'electrònica moderna com la ràdio, la televisió, els ordinadors, els telèfons i molts d'altres ginys de la nostra vida diària. Alguns dispositius semiconductors són el transistor, la cèl·lula fotoelèctrica, molts tipus de díodes com els LEDs, els tiristors o els circuits integrats analògics i digitals. Els panells solars fotovoltaics són aparells formats per cel·les fotovoltaiques, basades en materials semiconductors, que converteixen directament l'energia lumínica en energia elèctrica.El silici s'utilitza en la fabricació de la majoria dels productes comercials basats en materials semiconductors. També s'utilitzen en menor escala desenes d'altres tipus de material, com per exemple el germani, l'arsenur de gal·li o el carbur de silici. Els semiconductors en estat pur acostumen a rebre el nom de semiconductors intrínsecs. La conductivitat elèctrica dels semiconductors més comuns pot ser canviada radicalment per mitjà de l'addició d'altres elements anomenats impureses al material intrínsec i deixant que la barreja solidifiqui en un nou i diferent tipus de cristall. Aquest procés rep el nom de dopatge.
  • Erdieroalea eroankortasun elektrikoa tenperaturaren arabera aldatzen duen substantzia kristalinoa da. Giro-tenperaturan ez dira ez eroale ez isolatzaileak. Tenperatura zero absoluturantz hurbilduz gero isolatzaileak dira. Tenperatura altuetan berriz, eroale onak izatera hel daitezke.Gehien erabiltzen den material erdieroalea silizioa (Si) da eta ondoren germanioa (Ge). Horrez gain, AsGa, PIn, AsGaAl, TeCd, SeCd eta SCd konbinaketak ere erabiltzen dira.Bi motatako erdieroaleak daude: n motakoak karga negatiboak eroaten ditu eta p motakoak hutsune elektronikoak ditu
  • Полупроводниците са материали със специфична електропроводимост между тези на проводниците и изолаторите, приблизително в интервала между 103 S/cm и 10−8 S/cm. Излагането на различна температура, електрическо поле или различни честоти на светлината може да влияе на електропроводимостта на полупроводниците. Такива материали се наричат активни елементи.Активните елементи са в основата на съвременната електроника, широко използвани в радиоприемници, компютри, телефони и много други устройства. Сред полупроводниковите елементи са различни видове транзистори и диоди, слънчеви клетки, цифрови и аналогови интегрални схеми. За разлика от металните проводници, при които електрическият ток представлява поток от електрони, при полупроводниците той може да бъде също и поток от положително заредени „дупки“.Повечето промишлено произвеждани полупроводници са изготвени от силиций, а други често използвани материали са германий, галиев арсенид, силициев карбид. Повечето полупроводникови материали са кристални, но съществуват и аморфни или течни полупроводници, като смесите на арсен, селен и телур, както и органични полупроводници. Общото за всички тези вещества са междинните стойности на специфичната електропроводимост и нейната бърза промяна в зависимост от температурата, както и възможността за отрицателно диференциално съпротивление.
  • 半導体(はんどうたい)とは、電気をよく通す電気伝導体や通さない絶縁体に対して、それらの中間的な性質を示す物質である。特徴として、電気をどの程度通すかという電気伝導性を周囲の電場や温度によって敏感に変化させる性質を持つ。このように生成された後、外部の環境を変える事で電気伝導生を大きく変化させることができる性質は今日の電子機械にとって重要であり、電子工学で使用されるICのような半導体素子はこの半導体の性質を利用している。「半導体」という言葉は、元となった英語 "semiconductor" の "semi-" =「半分」と "conductor" =「導体」からの訳である。
  • 반도체(半導體, semiconductor)는 열 등의 에너지를 통해 전도성을 급격하게 변화시킬 수 있는 고체물질이다. 일반적으로는 규소 결정에 불순물을 넣어서 만든다. 주로 증폭 장치, 계산 장치 등을 구성하는 집적회로를 만드는 데에 쓰인다.반도체는 매우 낮은 온도에서는 부도체처럼 동작하고 실온에서는 도체처럼 동작한다. 다만 반도체는 부도체처럼 동작할 때와 도체처럼 동작할 때 각각 부도체나 도체와 다른 점이 있다. 부도체와의 차이점으로는 에너지 띠간격(bandgap)이 커 전자가 전도띠(conduction band)로 잘 올라가지 못하는 부도체와 달리 에너지 띠간격이 충분히 작아 실온에서 전자가 쉽게 전도띠로 올라갈 수 있다는 점이 있으며 도체와의 차이점으로는 절대 0도에서 가장 윗부분의 전자 에너지 밴드가 도체처럼 일부만 차 있는 것이 아니라 가득 차 있다는 점이 있다.
  • Polovodič je pevná látka, jejíž elektrická vodivost závisí na vnějších nebo vnitřních podmínkách, a dá se změnou těchto podmínek snadno ovlivnit. Změna vnějších podmínek znamená dodání některého z druhů energie – nejčastěji tepelné, elektrické nebo světelné, změnu vnitřních podmínek představuje příměs jiného prvku v polovodiči.Mezi polovodiče patří prvky křemík, germanium, selen, sloučeniny arsenid galia GaAs, sulfid olovnatý PbS aj. Většina polovodičů jsou krystalické látky, existují však také polovodiče amorfní (některá skla). Polovodiče se využívají u elektronických součástek.
  • Półprzewodniki − najczęściej substancje krystaliczne, których konduktywność (przewodnictwo właściwe) może być zmieniana w szerokim zakresie (np. 10-8 do 103 S/cm) poprzez domieszkowanie, ogrzewanie, oświetlenie bądź inne czynniki. Przewodnictwo typowego półprzewodnika plasuje się między przewodnictwem metali i dielektryków.Wartość rezystancji półprzewodnika maleje na ogół ze wzrostem temperatury. Półprzewodniki posiadają pasmo wzbronione między pasmem walencyjnym a pasmem przewodzenia w zakresie 0 - 6 eV (np. Ge 0,7 eV, Si 1,1 eV , GaAs 1,4 eV, GaN 3,4 eV, AlN 6,2 eV). Koncentracje nośników ładunku w półprzewodnikach można zmieniać w bardzo szerokich granicach, zmieniając temperaturę półprzewodnika lub natężenie padającego na niego światła lub nawet przez ściskanie czy rozciąganie.W przemyśle elektronicznym najczęściej stosowanymi materiałami półprzewodnikowymi są pierwiastki grupy IV (np. krzem, german) oraz związki pierwiastków grup III i V (np. arsenek galu, azotek galu, antymonek indu) lub II i VI (tellurek kadmu). Materiały półprzewodnikowe są wytwarzane w postaci monokryształu, polikryształu lub proszku. Obecnie otrzymywane są również półprzewodniki organiczne, na ogół wielocykliczne związki aromatyczne np. poli(p-fenyleno-winylen).
  • A semiconductor is a material which has electrical conductivity between that of a conductor such as copper and that of an insulator such as glass. Semiconductors are the foundation of modern electronics, including transistors, solar cells, light-emitting diodes (LEDs), quantum dots and digital and analog integrated circuits. The modern understanding of the properties of a semiconductor relies on quantum physics to explain the movement of electrons inside a lattice of atoms. The increasing understanding of semiconductor materials and fabrication processes has made possible continuing increases in the complexity and speed of semiconductor devices, an effect known as Moore's Law.The conductivity of a semiconductor material increases with increasing temperature, behaviour opposite to that of a metal. Semiconductors can display a range of useful properties such as passing current more easily in one direction than the other, variable resistance, and sensitivity to light or heat. Because the conductive properties of a semiconductor material can be modified by controlled addition of impurities or by the application of electrical fields or light, devices made with semiconductors are very useful for amplification of signals, switching, and energy conversion.Current conduction in a semiconductor occurs through the movement of free electrons and "holes", collectively known as charge carriers. Adding impurity atoms to a semiconducting material, known as "doping", greatly increases the number of charge carriers within it. When a doped semiconductor contains excess holes it is called "p-type", and when it contains excess free electrons it is known as "n-type". The semiconductor material used in devices is doped under highly controlled conditions to precisely control the location and concentration of p- and n-type dopants. A single semiconductor crystal can have multiple p- and n-type regions; the p-n junctions between these regions have many useful electronic properties.Some of the properties of semiconductor materials were observed throughout the mid 19th and first decades of the 20th century. Development of quantum physics in turn allowed the development of the transistor in 1948. Although some pure elements and many compounds display semiconductor properties, silicon, germanium, and compounds of gallium are the most widely used in electronic devices.
  • I semiconduttori sono materiali che hanno una resistività (o anche una conducibilità) intermedia tra i conduttori e gli isolanti.Essi sono alla base di tutti i principali dispositivi elettronici e microelettronici a stato solido quali i transistor, i diodi e i diodi ad emissione luminosa (LED). Le proprietà dei semiconduttori diventano interessanti se vengono opportunamente drogati con impurità.Le loro caratteristiche quali resistenza, mobilità, concentrazionedei portatori di carica sono importanti per determinare il campodi utilizzo. La risposta di un semiconduttore a una forzante dipende dalle suecaratteristiche intrinseche e da alcune variabili esterne come la temperatura.
  • Een halfgeleider is een stof die qua elektrische geleiding het midden houdt tussen een geleider en een isolator. Qua structuur is hij eigenlijk een isolator, maar hij is gemakkelijk tot geleiding te krijgen, waarbij bovendien de elektrische eigenschappen goed manipuleerbaar zijn door bijvoorbeeld sporen van andere stoffen toe te voegen.Met halfgeleiders kunnen allerlei elektronische componenten worden gemaakt. Elektronici noemen dergelijke halfgeleidercomponenten meestal kortheidshalve „halfgeleiders”.
  • Halbleiter sind Festkörper, die abhängig von ihrem Zustand elektrische Leiter oder Nichtleiter sind. Halbleiter können verschiedene chemische Strukturen besitzen. Unterschieden wird zwischen Elementhalbleitern, die aus einem einzigen Element aufgebaut sind, und Verbindungshalbleitern, hierbei speziell den organischen Halbleitern.Die elektrische Leitfähigkeit von Halbleitern ist stark temperaturabhängig. In der Nähe des absoluten Temperaturnullpunkts sind Halbleiter Isolatoren. Bei Raumtemperatur sind sie je nach materialspezifischem Abstand von Leitungs- und Valenzband leitend oder nichtleitend. Die elektrische Leitfähigkeit von Halbleitern nimmt mit steigender Temperatur zu, sie gehören damit zu den Heißleitern. Des Weiteren lässt sich die Leitfähigkeit durch das Einbringen von Fremdatomen (Dotieren) aus einer anderen chemischen Hauptgruppe in weiten Grenzen gezielt beeinflussen.Halbleiter werden in einkristalliner, polykristalliner und amorpher Form verwendet.Bedeutung haben Halbleiter für die Elektrotechnik und insbesondere für die Elektronik, hierbei kann ihre Leitfähigkeit durch Anlegen einer Steuerspannung oder eines Steuerstroms wie zum Beispiel beim Transistor an geeignete Strukturen verändert werden oder sie weisen eine richtungsabhängige Leitfähigkeit auf (Diode, Gleichrichter).Weitere Anwendungen sind Heißleiter, Varistoren, Strahlungssensoren (Photoleiter, Fotowiderstände, Photodioden beziehungsweise Solarzellen), thermoelektrische Generatoren, Peltierelemente sowie Strahlungs- beziehungsweise Lichtquellen (Laserdiode, Leuchtdiode).
dbpedia-owl:thumbnail
dbpedia-owl:wikiPageExternalLink
dbpedia-owl:wikiPageID
  • 3855352 (xsd:integer)
dbpedia-owl:wikiPageLength
  • 23175 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 183 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 108976460 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
prop-fr:commons
  • Category:Semiconductors
prop-fr:consultéLe
  • 2014-11-09 (xsd:date)
prop-fr:langue
  • fr
prop-fr:site
  • Al Mohandiss
prop-fr:titre
  • Étude du transistor
prop-fr:url
  • http://almohandiss.com/index.php/espace-etudiant/electronique-de-base/856-etude-du-transistor
prop-fr:wikiPageUsesTemplate
prop-fr:wiktionary
  • semi-conducteur
dcterms:subject
rdf:type
rdfs:comment
  • Un semi-conducteur est un matériau qui a les caractéristiques électriques d'un isolant, mais pour lequel la probabilité qu'un électron puisse contribuer à un courant électrique, quoique faible, est suffisamment importante. En d'autres termes, la conductivité électrique d'un semi-conducteur est intermédiaire entre celle des métaux et celle des isolants.
  • 半導体(はんどうたい)とは、電気をよく通す電気伝導体や通さない絶縁体に対して、それらの中間的な性質を示す物質である。特徴として、電気をどの程度通すかという電気伝導性を周囲の電場や温度によって敏感に変化させる性質を持つ。このように生成された後、外部の環境を変える事で電気伝導生を大きく変化させることができる性質は今日の電子機械にとって重要であり、電子工学で使用されるICのような半導体素子はこの半導体の性質を利用している。「半導体」という言葉は、元となった英語 "semiconductor" の "semi-" =「半分」と "conductor" =「導体」からの訳である。
  • 반도체(半導體, semiconductor)는 열 등의 에너지를 통해 전도성을 급격하게 변화시킬 수 있는 고체물질이다. 일반적으로는 규소 결정에 불순물을 넣어서 만든다. 주로 증폭 장치, 계산 장치 등을 구성하는 집적회로를 만드는 데에 쓰인다.반도체는 매우 낮은 온도에서는 부도체처럼 동작하고 실온에서는 도체처럼 동작한다. 다만 반도체는 부도체처럼 동작할 때와 도체처럼 동작할 때 각각 부도체나 도체와 다른 점이 있다. 부도체와의 차이점으로는 에너지 띠간격(bandgap)이 커 전자가 전도띠(conduction band)로 잘 올라가지 못하는 부도체와 달리 에너지 띠간격이 충분히 작아 실온에서 전자가 쉽게 전도띠로 올라갈 수 있다는 점이 있으며 도체와의 차이점으로는 절대 0도에서 가장 윗부분의 전자 에너지 밴드가 도체처럼 일부만 차 있는 것이 아니라 가득 차 있다는 점이 있다.
  • Semikonduktor adalah sebuah bahan dengan konduktivitas listrik yang berada di antara insulator (isolator) dan konduktor. Semikonduktor disebut juga sebagai bahan setengah penghantar listrik. Suatu semikonduktor bersifat sebagai insulator jika tidak diberi arus listrik dengan cara dan besaran arus tertentu, namun pada temperatur, arus tertentu, tatacara tertentu dan persyaratan kerja semikonduktor berfungsi sebagai konduktor, misal sebagai penguat arus, penguat tegangan dan penguat daya.
  • Halbleiter sind Festkörper, die abhängig von ihrem Zustand elektrische Leiter oder Nichtleiter sind. Halbleiter können verschiedene chemische Strukturen besitzen. Unterschieden wird zwischen Elementhalbleitern, die aus einem einzigen Element aufgebaut sind, und Verbindungshalbleitern, hierbei speziell den organischen Halbleitern.Die elektrische Leitfähigkeit von Halbleitern ist stark temperaturabhängig. In der Nähe des absoluten Temperaturnullpunkts sind Halbleiter Isolatoren.
  • Een halfgeleider is een stof die qua elektrische geleiding het midden houdt tussen een geleider en een isolator. Qua structuur is hij eigenlijk een isolator, maar hij is gemakkelijk tot geleiding te krijgen, waarbij bovendien de elektrische eigenschappen goed manipuleerbaar zijn door bijvoorbeeld sporen van andere stoffen toe te voegen.Met halfgeleiders kunnen allerlei elektronische componenten worden gemaakt.
  • Semiconductor es un elemento que se comporta como un conductor o como un aislante dependiendo de diversos factores, como por ejemplo el campo eléctrico o magnético, la presión, la radiación que le incide, o la temperatura del ambiente en el que se encuentre.
  • Półprzewodniki − najczęściej substancje krystaliczne, których konduktywność (przewodnictwo właściwe) może być zmieniana w szerokim zakresie (np. 10-8 do 103 S/cm) poprzez domieszkowanie, ogrzewanie, oświetlenie bądź inne czynniki. Przewodnictwo typowego półprzewodnika plasuje się między przewodnictwem metali i dielektryków.Wartość rezystancji półprzewodnika maleje na ogół ze wzrostem temperatury.
  • Полупроводни́к — материал, который по своей удельной проводимости занимает промежуточное место между проводниками и диэлектриками и отличается от проводников сильной зависимостью удельной проводимости от концентрации примесей, температуры и воздействия различных видов излучения.
  • A semiconductor is a material which has electrical conductivity between that of a conductor such as copper and that of an insulator such as glass. Semiconductors are the foundation of modern electronics, including transistors, solar cells, light-emitting diodes (LEDs), quantum dots and digital and analog integrated circuits. The modern understanding of the properties of a semiconductor relies on quantum physics to explain the movement of electrons inside a lattice of atoms.
  • Semicondutores são sólidos geralmente cristalinos de condutividade elétrica intermediária entre condutores e isolantes. Os semicondutores são, quando puros e cristalinos, a temperaturas muito baixas, excelentes isolantes, ao contrário do comportamento observado nos metais. Contudo, a condutividade dos semicondutores puros (intrínsecos) aumenta significativamente com a temperatura.
  • Yarı iletken madde, elektrik iletkenliği bakımından, iletken ile yalıtkan arasında kalan maddelerdir.Normal durumda yalıtkan olan bu maddeler ısı, ışık, manyetik etki veya elektriksel gerilim gibi dış etkiler uygulandığında bir miktar değerlik elektronlarını serbest hale geçirerek iletken duruma gelirler. Uygulanan bu dış etki veya etkiler ortadan kaldırıldığında ise yalıtkan duruma geri dönerler.
  • Polovodič je pevná látka, jejíž elektrická vodivost závisí na vnějších nebo vnitřních podmínkách, a dá se změnou těchto podmínek snadno ovlivnit. Změna vnějších podmínek znamená dodání některého z druhů energie – nejčastěji tepelné, elektrické nebo světelné, změnu vnitřních podmínek představuje příměs jiného prvku v polovodiči.Mezi polovodiče patří prvky křemík, germanium, selen, sloučeniny arsenid galia GaAs, sulfid olovnatý PbS aj.
  • I semiconduttori sono materiali che hanno una resistività (o anche una conducibilità) intermedia tra i conduttori e gli isolanti.Essi sono alla base di tutti i principali dispositivi elettronici e microelettronici a stato solido quali i transistor, i diodi e i diodi ad emissione luminosa (LED).
  • Félvezetőknek nevezzük azokat az anyagokat, amelyek fajlagos ellenállása a vezetők és a szigetelők közé esik. A félvezetők fajlagos elektromos vezetése közönséges hőmérsékleten 10-9 – 103 1/Ωcm, azaz gyengén vezetik az áramot és nem jók szigetelőnek sem. Nagyon alacsony hőmérsékleten a félvezető szigetelőként viselkedik, de szobahőmérsékleten sajátvezetésük van. A másik jellemző tulajdonságuk az ellenállásuk hőfokfüggése. A félvezetők ellenállása a hőmérséklettel exponenciálisan csökken.
  • Un semiconductor és un material que es comporta com un aïllant a molt baixa temperatura, però que presenta certa conductivitat elèctrica a temperatura ambient essent possible de controlar aquesta conductivitat per mitjà de l'addició d'impureses. No s'ha definit clarament com diferenciar un semiconductor i un aïllant, però es pot dir que un semiconductor és un aïllant amb la banda electrònica de conducció prou poblada a temperatura ambient.
  • Erdieroalea eroankortasun elektrikoa tenperaturaren arabera aldatzen duen substantzia kristalinoa da. Giro-tenperaturan ez dira ez eroale ez isolatzaileak. Tenperatura zero absoluturantz hurbilduz gero isolatzaileak dira. Tenperatura altuetan berriz, eroale onak izatera hel daitezke.Gehien erabiltzen den material erdieroalea silizioa (Si) da eta ondoren germanioa (Ge).
  • Полупроводниците са материали със специфична електропроводимост между тези на проводниците и изолаторите, приблизително в интервала между 103 S/cm и 10−8 S/cm. Излагането на различна температура, електрическо поле или различни честоти на светлината може да влияе на електропроводимостта на полупроводниците. Такива материали се наричат активни елементи.Активните елементи са в основата на съвременната електроника, широко използвани в радиоприемници, компютри, телефони и много други устройства.
rdfs:label
  • Semi-conducteur
  • Erdieroale
  • Félvezető
  • Halbleiter
  • Halfgeleider (vastestoffysica)
  • Polovodič
  • Półprzewodniki
  • Semiconductor
  • Semiconductor
  • Semiconductor
  • Semicondutor
  • Semiconduttore
  • Semikonduktor
  • Yarı iletken
  • Полупроводник
  • Полупроводник
  • 半導体
  • 반도체
owl:sameAs
http://www.w3.org/ns/prov#wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbpedia-owl:domain of
is dbpedia-owl:industry of
is dbpedia-owl:product of
is dbpedia-owl:wikiPageRedirects of
is dbpedia-owl:wikiPageWikiLink of
is prop-fr:champs of
is prop-fr:produits of
is prop-fr:secteursD'activités of
is skos:subject of
is foaf:primaryTopic of