Le repliement de protéine est le processus physique par lequel un polypeptide se replie dans sa structure tridimensionnelle caractéristique dans laquelle il est fonctionnel.Chaque protéine commence sous forme de polypeptide, transcodée depuis une séquence d'ARNm en une chaîne linéaire d'acides aminés. Ce polypeptide ne possède pas à ce moment de structure tridimensionnelle développée (voir côté gauche de la figure).

PropertyValue
dbpedia-owl:abstract
  • Le repliement de protéine est le processus physique par lequel un polypeptide se replie dans sa structure tridimensionnelle caractéristique dans laquelle il est fonctionnel.Chaque protéine commence sous forme de polypeptide, transcodée depuis une séquence d'ARNm en une chaîne linéaire d'acides aminés. Ce polypeptide ne possède pas à ce moment de structure tridimensionnelle développée (voir côté gauche de la figure). Cependant, chaque acide aminé de la chaîne peut être considéré comme ayant certaines caractéristiques chimiques essentielles. Cela peut être l'hydrophobie, l'hydrophilie, ou la charge électrique, par exemple. Elles interagissent entre elles et ces interactions conduisent, dans la cellule, à une structure tridimensionnelle bien définie, la protéine repliée (à droite sur la figure), connue comme l'état natif. La structure tridimensionnelle résultante est déterminée par la séquence des acides aminés, Le mécanisme du repliement de protéines n'est pas encore complètement compris, en particulier l'ordre dans lequel les différentes parties se replient. Le problème est ardu car, par exemple, certaines parties déjà repliées aident au repliement d'autres parties, ce qui rend le problème non linéaire.La détermination expérimentale de la structure tridimensionnelle d'une protéine est souvent très difficile et coûteuse. Cependant, la séquence de cette protéine est connue, en particulier depuis le séquençage complet de génomes et la détection automatiques de séquences codantes. En conséquence, les scientifiques ont essayé d'utiliser plusieurs techniques biophysiques pour replier « manuellement » une protéine, c'est-à-dire de prédire la structure d'une protéine complète à partir de sa séquence. Si cette méthode a apporté des résultats intéressants avec de courtes protéines, l'état actuel de la science achoppe complètement à prédire la structure tridimensionelle des protéines intégrales de membranes. D'autres protéines échappent à cette analyse, par exemple les protéines possédant de nombreux ponts disulfures ou encore des protéines synthétisées sous forme de pré-protéine, c'est-à-dire sous forme de protéine précurseur clivée par des protéases spécifiques pour acquérir leur maturité. C'est le cas par exemple de l'insuline.La structure tridimensionnelle correcte, ou native, est essentielle pour que la protéine puisse assurer sa fonction au sein de la cellule. L'échec du repliement dans la forme attendue produit des protéines inactives avec des propriétés différentes (par exemple, le prion). De nombreuses maladies neurodégénératives ou autres sont considérées comme résultant d'une accumulation de protéines « mal repliées ».
  • В биохимии и молекулярной биологии фо́лдингом белка (укладкой белка, от англ. folding) называют процесс спонтанного сворачивания полипептидной цепи в уникальную нативную пространственную структуру (так называемая третичная структура).Каждая молекула белка начинает формироваться как полипептид, транслируемый из последовательности мРНК в виде линейной цепочки аминокислот. У полипептида нет устойчивой трёхмерной структуры (пример в левой части изображения). Однако все аминокислоты в цепочке имеют определённые химические свойства: гидрофобность, гидрофильность, электрический заряд. При взаимодействии аминокислот друг с другом и клеточным окружением получается хорошо определённая трёхмерная структура — конформация. В результате на внешней поверхности белковой глобулы формируются полости активных центров, а также места контактов субъединиц мультимерных белков друг с другом и с биологическими мембранами.В редких случаях нативными могут быть сразу две конформации белка (т. н. конформеры). Они могут сильно различаться, и даже выполнять различные функции. Для этого необходимо, чтобы в разных областях фазового пространства белковой молекулы существовали два примерно равных по энергии состояния, каждое из которых будет встречаться в нативной форме с соответствующей вероятностью.Для стабилизации третичной структуры многие белки в клетке подвергаются посттрансляционной модификации. Весьма часто встречаются дисульфидные мостики между пространственно близкими участками полипептидной цепи.Для корректной работы белков весьма важна правильная трёхмерная структура. Ошибки сворачивания обычно приводят к образованию неактивного белка с отличающимися свойствами. Считается, что некоторые болезни происходят от накопления в клетках неправильно свёрнутых белков (более подробно это описано в статье Прионы).В фолдинге участвуют белки-шапероны. И хотя большинство только что синтезированных белков могут сворачиваться и при отсутствии шаперонов, некоторому меньшинству обязательно требуется их присутствие.Механизм сворачивания белков до конца не изучен. Экспериментальное определение трёхмерной структуры белка часто очень сложно и дорого. Однако аминокислотная последовательность белка обычно известна. Поэтому учёные пытаются использовать различные биофизические методы, чтобы предсказать пространственную структуру белка из его аминокислотной последовательности.
  • Eiwitvouwing of eiwitopvouwing (Engels: protein folding) is het proces waarbij een eiwit verondersteld wordt zijn driedimensionale functionele vorm of conformatie aan te nemen. Het is een fysisch proces waarbij een polypeptide vanuit een random coil (een statistische keten) vouwt in haar karakteristieke en functionele driedimensionale eiwitstructuur.Elk eiwit bestaat uit een ongevouwen polypeptide of random coil wanneer het bij de eiwitsynthese van een mRNA-sequentie getransleerd wordt naar een lineaire keten van aminozuren. Deze polypeptide heeft geen stabiele (langdurige) driedimensionale structuur (links in de figuur). Aminozuren reageren met elkaar voor het vormen van een duidelijk omlijnde driedimensionale structuur, het gevouwen eiwit (rechts in de figuur). Het gevouwen eiwit wordt het natieve stadium genoemd. De driedimensionale structuur wordt bepaald door de aminozuursequentie (Anfinsens dogma). Experimenten in de jaren 80 van de twintigste eeuw laten zien dat het codon voor een aminozuur ook de eiwitstructuur kan beïnvloeden.
  • フォールディング (folding) は、タンパク質が特定の立体構造に折りたたまれる現象をいう。
  • El plegamiento de proteínas es el proceso por el que una proteína alcanza su estructura tridimensional. La función biológica de una proteína depende de su correcto plegamiento. Si una proteína no se pliega correctamente será no funcional y, por lo tanto, no será capaz de cumplir su función biológica.El proceso inverso es conocido como desnaturalización de proteínas. Una proteína desnaturalizada no es más que una cadena de aminoácidos sin una estructura tridimensional definida ni estable. A menudo, las proteínas desnaturalizadas pierden su solubilidad y precipitan. En algunos casos los procesos de plegamiento y desnaturalización son reversibles, aunque en otros no.
  • 단백질 접힘(Protein folding)은 선형의 아미노산 복합체인 단백질이 개개의 단백질에 고유한 접힌 구조(folded structure or native structure)를 만드는 과정을 말한다.
  • O dobramento de proteínas (em inglês: Protein Folding) é um processo químico através do qual a estrutura de uma proteína assume a sua configuração funcional.Todas as moléculas de proteínas são cadeias heterogéneas não-ramificadas de aminoácidos. Ao dobrar e enrolar-se para tomar uma forma tridimensional específica, as proteínas são capazes de realizar a sua função biológica.O processo contrário chama-se desnaturação, onde uma proteína original é forçada a perder a sua configuração funcional, tornando-se uma cadeia amorfa e não-funcional de aminoácidos. As proteínas desnaturadas podem perder a sua solubilidade e precipitar, tornando-se solidos insolúveis. Em alguns casos, a desnaturação é reversível,e as proteínas podem voltar a dobrar-se. No entanto, a desnaturação é, na maior parte dos casos, um processo irreversível.
  • Protein folding is the process by which a protein structure assumes its functional shape or conformation. It is the physical process by which a polypeptide folds into its characteristic and functional three-dimensional structure from random coil.Each protein exists as an unfolded polypeptide or random coil when translated from a sequence of mRNA to a linear chain of amino acids. This polypeptide lacks any stable (long-lasting) three-dimensional structure (the left hand side of the first figure). Amino acids interact with each other to produce a well-defined three-dimensional structure, the folded protein (the right hand side of the figure), known as the native state. The resulting three-dimensional structure is determined by the amino acid sequence (Anfinsen's dogma). Experiments beginning in the 1980s indicate the codon for an amino acid can also influence protein structure.The correct three-dimensional structure is essential to function, although some parts of functional proteins may remain unfolded. Failure to fold into native structure generally produces inactive proteins, but in some instances misfolded proteins have modified or toxic functionality. Several neurodegenerative and other diseases are believed to result from the accumulation of amyloid fibrils formed by misfolded proteins. Many allergies are caused by incorrect folding of some proteins, for the immune system does not produce antibodies for certain protein structures.
  • El plegament proteic és el procés físic pel qual un polipèptid es replega en la seva estructura tridimensional característica i funcional. Cada proteïna comença en forma de polipèptid, traduït d'una seqüència d'ARNm com a cadena lineal d'aminoàcids. Aquest polipèptid manca d'estructura tridimensional desenvolupada (a l'esquerra de la imatge). Tanmateix, es pot considerar que cada aminoàcid de la cadena té unes determinades característiques químiques "brutes". Poden ser, per exemple, la hidrofòbia, la hidrofília, o una càrrega elèctrica. Els aminoàcids interaccionen entre ells i amb el seu medi cel·lular per produir una forma tridimensional ben definida, la proteïna replegada (a la dreta de la imatge), coneguda com a estat natiu. L'estructura tridimensional resultant és determinada per la seqüència d'aminoàcids. El mecanisme del replegament proteic no és comprès del tot.Per a moltes proteïnes l'estructura correcta tridimensional és essencial per a realitzar la seva funció.Si la proteïna no es plega en la forma desitjada, normalment es produeixen proteïnes inactives amb propietats diferents incloent prions tòxics. Algunes malalties neurodegeneratives i d'altres es consideren que són la causa de l'acumulació de proteïnes plegades incorrectament.
  • Die Proteinfaltung ist der Prozess, durch den Proteine ihre dreidimensionale Struktur erhalten. Sie findet während und nach der Synthese der Peptidkette statt und ist Voraussetzung für die fehlerfreie Funktion des Proteins. Bewirkt wird die Faltung durch kleinste Bewegungen der Lösungsmittelmoleküle (Wassermoleküle) und durch elektrische Anziehungskräfte innerhalb des Proteinmoleküls. Einige Proteine können nur mithilfe von bestimmten Enzymen oder Chaperon-Proteinen die richtige Faltung erreichen.
  • Zwijanie białka, nazywane także fałdowaniem białka to proces fizyczny polegający na formowaniu przez polipeptyd (posiadający strukturę kłębka statystycznego) wysoko zorganizowanej struktury o charakterystycznej i stabilnej konformacji.Przyjmuje się, że każde białko tuż po zakończeniu translacji występuje pod postacią nieustrukturyzowanego łańcucha polipeptydowego. Taki polipeptyd nie wykazuje obecności dobrze zdefiniowanej, stabilnej struktury przestrzennej. Dopiero na skutek interakcji pomiędzy sąsiednimi aminokwasami polipeptyd zaczyna przyjmować określoną konformację, określaną często mianem stanu natywnego. Obecnie uważa się, że głównym czynnikiem decydującym o natywnej strukturze danego białka jest jego sekwencja aminokwasowa., jednakże niektóre obserwacje wskazują, że naturalna struktura białek występujących w żywej komórce może być zależna od oddziaływań z innymi białkami lub kwasami nukleinowymi.Należy podkreślić, że dla większości znanych białek prawidłowa struktura przestrzenna jest konieczna dla ich roli fizjologicznejNiepowodzenie w przyjęciu oczekiwanej struktury zwykle prowadzi do powstania białka o odmiennych właściwościach, które może być nawet toksyczne dla organizmu (przykładem może być wiele białek prionowych). Wiele dowodów wskazuje na to, że pewne choroby neurodegeneracyjne wywołane są akumulacją białek o nieprawidłowej strukturze takich jak amyloidy, formujące długie włókna w komórkach.== Przypisy ==
  • Skládání proteinů je proces, při kterém struktura proteinu zaujme svůj správný, funkční tvar (konformaci). Výchozí podoba proteinu je lineární neuspořádaný řetězec aminokyselin vzniklý při translaci mRNA, který se následně uspořádá do správné podoby, takzvaného nativního stavu.Podle termodynamické hypotézy, nazývané také Anfisenovo dogma, je veškerá informace pro tvorbu terciární struktury proteinů (prostorová konformace) určena aminokyselinovou sekvencí proteinů (primární struktura proteinů.Správná prostorová struktura je nezbytná pro správnou funkci proteinů, i když některé části funkčních proteinů mohou zůstat neuspořádané. Ve většině případů jsou nesprávně sbalené proteiny inaktivní, v některých případech mají ovšem odlišnou aktivitu nebo jsou toxické. Předpokládá se, že některé neurodegenerativní nemoci jsou způsobeny akumulací nesprávně uspořádaných proteinů, například Alzheimerova choroba provázená tvorbou amyloidových plaků vytvářených nesprávně složeným proteinem nazývaného amyloid beta.
  • Il ripiegamento di proteine o ripiegamento proteico (in inglese protein folding) è il processo di ripiegamento molecolare attraverso il quale le proteine ottengono la loro struttura tridimensionale. Il ripiegamento avviene sia contemporaneamente alla sintesi proteica che alla fine di questa. Soltanto una volta terminato il ripiegamento le proteine possono assumere la loro funzione fisiologica. Il processo può essere descritto come un auto-assemblamento intramolecolare dove la proteina è guidata ad assumere una specifica forma attraverso interazioni non covalenti, come legami ad idrogeno, coordinazione di metalli, forze idrofobiche, forze di Van der Waals, interazioni π-π
dbpedia-owl:thumbnail
dbpedia-owl:wikiPageExternalLink
dbpedia-owl:wikiPageID
  • 1997747 (xsd:integer)
dbpedia-owl:wikiPageLength
  • 22908 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 124 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 108151918 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • Le repliement de protéine est le processus physique par lequel un polypeptide se replie dans sa structure tridimensionnelle caractéristique dans laquelle il est fonctionnel.Chaque protéine commence sous forme de polypeptide, transcodée depuis une séquence d'ARNm en une chaîne linéaire d'acides aminés. Ce polypeptide ne possède pas à ce moment de structure tridimensionnelle développée (voir côté gauche de la figure).
  • フォールディング (folding) は、タンパク質が特定の立体構造に折りたたまれる現象をいう。
  • 단백질 접힘(Protein folding)은 선형의 아미노산 복합체인 단백질이 개개의 단백질에 고유한 접힌 구조(folded structure or native structure)를 만드는 과정을 말한다.
  • Die Proteinfaltung ist der Prozess, durch den Proteine ihre dreidimensionale Struktur erhalten. Sie findet während und nach der Synthese der Peptidkette statt und ist Voraussetzung für die fehlerfreie Funktion des Proteins. Bewirkt wird die Faltung durch kleinste Bewegungen der Lösungsmittelmoleküle (Wassermoleküle) und durch elektrische Anziehungskräfte innerhalb des Proteinmoleküls.
  • Eiwitvouwing of eiwitopvouwing (Engels: protein folding) is het proces waarbij een eiwit verondersteld wordt zijn driedimensionale functionele vorm of conformatie aan te nemen.
  • Il ripiegamento di proteine o ripiegamento proteico (in inglese protein folding) è il processo di ripiegamento molecolare attraverso il quale le proteine ottengono la loro struttura tridimensionale. Il ripiegamento avviene sia contemporaneamente alla sintesi proteica che alla fine di questa. Soltanto una volta terminato il ripiegamento le proteine possono assumere la loro funzione fisiologica.
  • El plegamiento de proteínas es el proceso por el que una proteína alcanza su estructura tridimensional. La función biológica de una proteína depende de su correcto plegamiento. Si una proteína no se pliega correctamente será no funcional y, por lo tanto, no será capaz de cumplir su función biológica.El proceso inverso es conocido como desnaturalización de proteínas. Una proteína desnaturalizada no es más que una cadena de aminoácidos sin una estructura tridimensional definida ni estable.
  • O dobramento de proteínas (em inglês: Protein Folding) é um processo químico através do qual a estrutura de uma proteína assume a sua configuração funcional.Todas as moléculas de proteínas são cadeias heterogéneas não-ramificadas de aminoácidos.
  • El plegament proteic és el procés físic pel qual un polipèptid es replega en la seva estructura tridimensional característica i funcional. Cada proteïna comença en forma de polipèptid, traduït d'una seqüència d'ARNm com a cadena lineal d'aminoàcids. Aquest polipèptid manca d'estructura tridimensional desenvolupada (a l'esquerra de la imatge). Tanmateix, es pot considerar que cada aminoàcid de la cadena té unes determinades característiques químiques "brutes".
  • Protein folding is the process by which a protein structure assumes its functional shape or conformation. It is the physical process by which a polypeptide folds into its characteristic and functional three-dimensional structure from random coil.Each protein exists as an unfolded polypeptide or random coil when translated from a sequence of mRNA to a linear chain of amino acids.
  • Zwijanie białka, nazywane także fałdowaniem białka to proces fizyczny polegający na formowaniu przez polipeptyd (posiadający strukturę kłębka statystycznego) wysoko zorganizowanej struktury o charakterystycznej i stabilnej konformacji.Przyjmuje się, że każde białko tuż po zakończeniu translacji występuje pod postacią nieustrukturyzowanego łańcucha polipeptydowego. Taki polipeptyd nie wykazuje obecności dobrze zdefiniowanej, stabilnej struktury przestrzennej.
  • В биохимии и молекулярной биологии фо́лдингом белка (укладкой белка, от англ. folding) называют процесс спонтанного сворачивания полипептидной цепи в уникальную нативную пространственную структуру (так называемая третичная структура).Каждая молекула белка начинает формироваться как полипептид, транслируемый из последовательности мРНК в виде линейной цепочки аминокислот. У полипептида нет устойчивой трёхмерной структуры (пример в левой части изображения).
  • Skládání proteinů je proces, při kterém struktura proteinu zaujme svůj správný, funkční tvar (konformaci).
rdfs:label
  • Repliement de protéine
  • Eiwitvouwing
  • Enovelamento de proteínas
  • Plegament proteic
  • Plegamiento de proteínas
  • Protein folding
  • Proteinfaltung
  • Ripiegamento di proteine
  • Skládání proteinů
  • Zwijanie białka
  • Фолдинг белка
  • フォールディング
  • 단백질 접힘
owl:sameAs
http://www.w3.org/ns/prov#wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbpedia-owl:wikiPageDisambiguates of
is dbpedia-owl:wikiPageRedirects of
is dbpedia-owl:wikiPageWikiLink of
is foaf:primaryTopic of