En mathématiques, le raisonnement par récurrence est une forme de raisonnement visant à démontrer une propriété portant sur tous les entiers naturels.

PropertyValue
dbpedia-owl:abstract
  • En mathématiques, le raisonnement par récurrence est une forme de raisonnement visant à démontrer une propriété portant sur tous les entiers naturels. Le raisonnement par récurrence consiste à démontrer les points suivants : La propriété est satisfaite par l'entier 0 ; Si cette propriété est satisfaite par un certain nombre entier naturel n, alors elle est satisfaite par son successeur, c'est-à-dire par le nombre entier n+1.Une fois cela établi, on en conclut que cette propriété est vraie pour tous les nombres entiers naturels.
  • Indução matemática é um método de prova matemática usado para demonstrar a verdade de um número infinito de proposições. A forma mais simples e mais comum de indução matemática prova que um enunciado vale para todos os números naturais n e consiste de dois passos: A base: mostrar que o enunciado vale para n = 1. O passo indutivo: mostrar que, se o enunciado vale para n=k, então o mesmo enunciado vale para n=k+1.Esse método funciona provando que o enunciado é verdadeiro para um valor inicial, e então provando que o processo usado para ir de um valor para o próximo é valido. Se ambas as coisas são provadas, então qualquer valor pode ser obtido através da repetição desse processo. Para entender por que os dois passos são suficientes, é útil pensar no efeito dominó: se você tem uma longa fila de dominós em pé e você puder assegurar que: O primeiro dominó cairá. Sempre que um dominó cair, seu próximo vizinho também cairá.então você pode concluir que todos os dominós cairão.
  • 수학적 귀납법(數學的歸納法, 영어: mathematical induction)은 수학에서 어떤 주장이 모든 자연수에 대해 성립함을 증명하기 위해 사용되는 방법이다. 무한개의 명제를 함께 증명하기 위해, 먼저 '첫 번째 명제가 참임을 증명'하고, 그 다음에는 '명제들 중에서 어떤 하나가 참이면 언제나 그 다음 명제도 참임을 증명'하는 방법으로 이루어진다.보다 일반적으로, 이는 모든 서수의 집합에 대해 초한귀납법으로 확장할 수 있으며, 임의의 기초관계에 대해 구조적 귀납법으로 확장할 수도 있다. 수학적 귀납법은 자연수 집합에서 정렬순서원리와 동치이다.수학적 귀납법은 이름과는 달리 귀납적 논증이 아닌 연역적 논증에 속하며, 따라서 이는 명확하고 엄밀한 증명 방법이다. 그러나 의미에 혼란이 없을 때에는 수학적 귀납법을 줄여서 귀납법이라고 부르기도 한다.
  • Induksi matematika merupakan pembuktian deduktif, meski namanya induksi. Induksi matematika atau disebut juga induksi lengkap sering dipergunakan untuk pernyataan-pernyataan yang menyangkut bilangan-bilangan asli.Pembuktian cara induksi matematika ingin membuktikan bahwa teori atau sifat itu benar untuk semua bilangan asli atau semua bilangan dalam himpunan bagiannya. Caranya ialah dengan menunjukkan bahwa sifat itu benar untuk n = 1 (atau S(1) adalah benar), kemudian ditunjukkan bahwa bila sifat itu benar untuk n = k (bila S(k) benar) menyebabkan sifat itu benar untuk n = k + 1 (atau S(k + 1) benar).
  • Vollständige Induktion ist eine mathematische Beweismethode, nach der eine Aussage für alle natürlichen Zahlen bewiesen wird. Da es sich um unendlich viele Zahlen handelt, kann solch ein Beweis nicht für alle Einzelfälle durchgeführt werden. Er wird daher in zwei Etappen durchgeführt: als Induktionsanfang für eine kleinste Zahl, für die man die Aussage zeigen will, (meist 1 oder 0) und als Induktionsschritt, der aus der Aussage für eine variable Zahl die entsprechende Aussage für die nächste Zahl logisch ableitet. Dieses Beweisverfahren ist von grundlegender Bedeutung für die Arithmetik und Mengenlehre und damit für alle Gebiete der Mathematik.
  • Математическая индукция — метод математического доказательства, используется чтобы доказать истинность некоторого утверждения для всех натуральных чисел. Для этого сначала проверяется истинность утверждения с номером 1 — база (базис) индукции, а затем доказывается, что, если верно утверждение с номером n, то верно и следующее утверждение с номером n + 1 — шаг индукции, или индукционный переход.Доказательство по индукции наглядно может быть представлено в виде так называемого принципа домино. Пусть какое угодно число косточек домино выставлено в ряд таким образом, что каждая косточка, падая, обязательно опрокидывает следующую за ней косточку (в этом заключается индукционный переход). Тогда, если мы толкнём первую косточку (это база индукции), то все косточки в ряду упадут.
  • La demostració per inducció en matemàtica és un tipus de demostració que s'aplica quan un cas base és provat i una regla d'inducció és usada per provar una sèrie d'altres casos que normalment és infinita.En una forma general mostra que les formes que poden ser avaluades són equivalents en el que es coneix com inducció estructural.L'any 1575 Francesco Maurolico va fer la primera demostració per inducció.
  • Matematická indukce je metoda dokazování matematických vět a tvrzení, která se používá, pokud chceme ukázat, že dané tvrzení platí pro všechna přirozená čísla, případně jinou, předem danou nekonečnou posloupnost. Typicky se užívá k důkazům těch tvrzení o přirozených číslech, u nichž je snadné ověřit, že platí pro číslo 1, a zároveň lze platnost pro každé dané n převést v konečně mnoha krocích na platnost pro 1 s tím, že počet těchto kroků s rostoucím n také roste.
  • Mathematical induction is a method of mathematical proof typically used to establish a given statement for all natural numbers. It is done in two steps. The first step, known as the base case, is to prove the given statement for the first natural number. The second step, known as the inductive step, is to prove that the given statement for any one natural number implies the given statement for the next natural number. From these two steps, mathematical induction is the rule from which we infer that the given statement is established for all natural numbers.The method can be extended to prove statements about more general well-founded structures, such as trees; this generalization, known as structural induction, is used in mathematical logic and computer science. Mathematical induction in this extended sense is closely related to recursion. Mathematical induction, in some form, is the foundation of all correctness proofs for computer programs.Although its namesake may suggest otherwise, mathematical induction should not be misconstrued as a form of inductive reasoning (also see Problem of induction). Mathematical induction is an inference rule used in proofs. In mathematics, proofs are examples of deductive reasoning and inductive reasoning is excluded from proofs.
  • Il principio d'induzione è un enunciato sui numeri naturali che in matematica trova un ampio impiego nelle dimostrazioni.Il principio d'induzione deriva direttamente dal quinto assioma di Peano, ed è ad esso equivalente: assumendolo cioè come assioma, ne deriva il quinto assioma di Peano. L'idea intuitiva con cui si può comprendere il senso dell'enunciato è quella di un "effetto domino": affinché le tessere da domino disposte lungo una fila cadano tutte sono sufficienti due condizioni: che cada la prima tessera che ogni tessera sia posizionata in modo tale che cadendo provochi la caduta della successiva.Il principio d'induzione estende quest'idea al caso in cui la fila sia composta da infinite tessere.
  • A teljes indukció (ritkábban: matematikai indukció) a matematika egyik legfontosabb és leggyakrabban használt bizonyítási módszere a természetes számok körében. A teljes indukció elve a következő: Ha egy tulajdonság igaz 1-re (n=1), továbbá ez a tulajdonság olyan természetű, hogy öröklődik a természetes számok rákövetkezése során (tehát n-ről n+1-re), akkor ezzel a tulajdonsággal az összes természetes szám rendelkezik.A módszer segítségével egyszerre megszámlálhatóan végtelen sok állítást lehet bizonyítani. A végtelen sok állítást sorba rendezzük, majd az így kapott sorozat első állítását igazoljuk. Ezután következik a teljes indukció „lelke”, az indukciós lépés. Ez annak az állításnak a bizonyítását jelenti, hogy ha feltesszük, hogy az n-edik állítás igaz, akkor abból következik az n+1-edik állítás igazsága is. Az első állítás igazsága és az indukciós lépés együtt már az összes állítás igazságát is bizonyítja.A teljes indukció nagyobb számosságokra való általánosítása a transzfinit indukció.A teljes indukció első írásos emléke 1575-ből származik. Ekkor bizonyította Francesco Maurolico Arithmeticorum libri fuo című művében, hogy az első n pozitív páratlan szám összege n2.A módszer neve félrevezető, valójában nem általánosításról, hanem a matematika szabályai szerinti bizonyításról van szó, azaz a teljes indukció – mint minden más matematikailag helyes módszer – tulajdonképpen dedukció.
  • Matematiksel tümevarım bir önermenin, genellikle tüm doğal sayılar için ya da bazen sonsuz bir sıranın tüm elemanları için, doğru olduğunu göstermek üzere kullanılan bir matematiksel tanıtlama yöntemidir. Matematiksel mantık ve bilgisayar bilimlerinde kullanılan daha genel bir tanıtlama biçimi değerlendirilebilen (hesaplanabilen) ifadelerin (dil için geçerli sözdizimlerinin) denk olduğunu gösterir. Buna yapısal tümevarım denir.Matematiksel tümevarımın en basit ve en sık kullanılan şekli bir önermenin tüm doğal sayılar n için doğru olduğunu gösterir ve iki adımda gerçekleştirilir: Önermenin n = 0 için doğru olduğunu göstermek Önerme n = m için doğru ise aynı önermenin n = m + 1 için de doğru olacağını göstermek Bu iki adımın neden yeterli olduğunu anlamak için domino etkisi örneğini göz önünde bulundurmak yeterli olacaktır. Baş başa dizilmiş olan bir domino taşları sırası var ve ilk domino taşını devirmek mümkün ise ve bir domino taşı devrildiğinde komşu taş da devriliyorsa, aynı şekilde dizilmiş olan ve sıranın devamı olan bütün domino taşlarının devrileceği sonucuna varılabilir.Matematiksel tümevarım, kümeler için öngörülen İyi-sıralılık ilkesine denktir.
  • 数学的帰納法(すうがくてききのうほう、英: mathematical induction)は自然数に関する命題P(n) が全てのn に対して成り立っている事を証明するための、次のような証明手法である。 P(1) が成り立つ事を示す。 任意の自然数 k に対して、P(k) ⇒ P(k + 1) が成り立つ事を示す。 以上の議論から任意の自然数 n について P(n) が成り立つ事を結論づける。上で1.と2.から3.を結論づける所が数学的帰納法に当たる。自然数に関するペアノの公理の中に、ほぼ等価なものが含まれている。なお、数学的「帰納」法という名前がつけられているが、数学的帰納法を用いた証明は、帰納ではなく演繹である。2. により次々と命題の正しさが"伝播"されていき、任意の自然数に対して命題が証明されていく様子が帰納のように見えるためこのような名前がつけられたにすぎない。
dbpedia-owl:wikiPageExternalLink
dbpedia-owl:wikiPageID
  • 52307 (xsd:integer)
dbpedia-owl:wikiPageLength
  • 41738 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 75 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 110612925 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • En mathématiques, le raisonnement par récurrence est une forme de raisonnement visant à démontrer une propriété portant sur tous les entiers naturels.
  • 수학적 귀납법(數學的歸納法, 영어: mathematical induction)은 수학에서 어떤 주장이 모든 자연수에 대해 성립함을 증명하기 위해 사용되는 방법이다. 무한개의 명제를 함께 증명하기 위해, 먼저 '첫 번째 명제가 참임을 증명'하고, 그 다음에는 '명제들 중에서 어떤 하나가 참이면 언제나 그 다음 명제도 참임을 증명'하는 방법으로 이루어진다.보다 일반적으로, 이는 모든 서수의 집합에 대해 초한귀납법으로 확장할 수 있으며, 임의의 기초관계에 대해 구조적 귀납법으로 확장할 수도 있다. 수학적 귀납법은 자연수 집합에서 정렬순서원리와 동치이다.수학적 귀납법은 이름과는 달리 귀납적 논증이 아닌 연역적 논증에 속하며, 따라서 이는 명확하고 엄밀한 증명 방법이다. 그러나 의미에 혼란이 없을 때에는 수학적 귀납법을 줄여서 귀납법이라고 부르기도 한다.
  • La demostració per inducció en matemàtica és un tipus de demostració que s'aplica quan un cas base és provat i una regla d'inducció és usada per provar una sèrie d'altres casos que normalment és infinita.En una forma general mostra que les formes que poden ser avaluades són equivalents en el que es coneix com inducció estructural.L'any 1575 Francesco Maurolico va fer la primera demostració per inducció.
  • Matematická indukce je metoda dokazování matematických vět a tvrzení, která se používá, pokud chceme ukázat, že dané tvrzení platí pro všechna přirozená čísla, případně jinou, předem danou nekonečnou posloupnost. Typicky se užívá k důkazům těch tvrzení o přirozených číslech, u nichž je snadné ověřit, že platí pro číslo 1, a zároveň lze platnost pro každé dané n převést v konečně mnoha krocích na platnost pro 1 s tím, že počet těchto kroků s rostoucím n také roste.
  • 数学的帰納法(すうがくてききのうほう、英: mathematical induction)は自然数に関する命題P(n) が全てのn に対して成り立っている事を証明するための、次のような証明手法である。 P(1) が成り立つ事を示す。 任意の自然数 k に対して、P(k) ⇒ P(k + 1) が成り立つ事を示す。 以上の議論から任意の自然数 n について P(n) が成り立つ事を結論づける。上で1.と2.から3.を結論づける所が数学的帰納法に当たる。自然数に関するペアノの公理の中に、ほぼ等価なものが含まれている。なお、数学的「帰納」法という名前がつけられているが、数学的帰納法を用いた証明は、帰納ではなく演繹である。2. により次々と命題の正しさが"伝播"されていき、任意の自然数に対して命題が証明されていく様子が帰納のように見えるためこのような名前がつけられたにすぎない。
  • Indução matemática é um método de prova matemática usado para demonstrar a verdade de um número infinito de proposições. A forma mais simples e mais comum de indução matemática prova que um enunciado vale para todos os números naturais n e consiste de dois passos: A base: mostrar que o enunciado vale para n = 1.
  • Induksi matematika merupakan pembuktian deduktif, meski namanya induksi. Induksi matematika atau disebut juga induksi lengkap sering dipergunakan untuk pernyataan-pernyataan yang menyangkut bilangan-bilangan asli.Pembuktian cara induksi matematika ingin membuktikan bahwa teori atau sifat itu benar untuk semua bilangan asli atau semua bilangan dalam himpunan bagiannya.
  • Vollständige Induktion ist eine mathematische Beweismethode, nach der eine Aussage für alle natürlichen Zahlen bewiesen wird. Da es sich um unendlich viele Zahlen handelt, kann solch ein Beweis nicht für alle Einzelfälle durchgeführt werden.
  • Математическая индукция — метод математического доказательства, используется чтобы доказать истинность некоторого утверждения для всех натуральных чисел. Для этого сначала проверяется истинность утверждения с номером 1 — база (базис) индукции, а затем доказывается, что, если верно утверждение с номером n, то верно и следующее утверждение с номером n + 1 — шаг индукции, или индукционный переход.Доказательство по индукции наглядно может быть представлено в виде так называемого принципа домино.
  • Математическата индукция е метод за математическо доказателство, използван за доказване на свойства на естествените числа и на други множества, равномощни с множеството на естествените числа. Типична е употребата ѝ за доказване, че дадено твърдение е вярно за всички естествени числа.
  • A teljes indukció (ritkábban: matematikai indukció) a matematika egyik legfontosabb és leggyakrabban használt bizonyítási módszere a természetes számok körében.
  • Matematiksel tümevarım bir önermenin, genellikle tüm doğal sayılar için ya da bazen sonsuz bir sıranın tüm elemanları için, doğru olduğunu göstermek üzere kullanılan bir matematiksel tanıtlama yöntemidir. Matematiksel mantık ve bilgisayar bilimlerinde kullanılan daha genel bir tanıtlama biçimi değerlendirilebilen (hesaplanabilen) ifadelerin (dil için geçerli sözdizimlerinin) denk olduğunu gösterir.
  • Mathematical induction is a method of mathematical proof typically used to establish a given statement for all natural numbers. It is done in two steps. The first step, known as the base case, is to prove the given statement for the first natural number. The second step, known as the inductive step, is to prove that the given statement for any one natural number implies the given statement for the next natural number.
  • Il principio d'induzione è un enunciato sui numeri naturali che in matematica trova un ampio impiego nelle dimostrazioni.Il principio d'induzione deriva direttamente dal quinto assioma di Peano, ed è ad esso equivalente: assumendolo cioè come assioma, ne deriva il quinto assioma di Peano.
rdfs:label
  • Raisonnement par récurrence
  • Demostració per inducció
  • Inducción matemática
  • Indukcja matematyczna
  • Induksi matematika
  • Indução matemática
  • Matematická indukce
  • Matematiksel tümevarım
  • Mathematical induction
  • Principio d'induzione
  • Teljes indukció
  • Volledige inductie
  • Vollständige Induktion
  • Математическа индукция
  • Математическая индукция
  • 数学的帰納法
  • 수학적 귀납법
owl:sameAs
http://www.w3.org/ns/prov#wasDerivedFrom
foaf:isPrimaryTopicOf
is dbpedia-owl:wikiPageDisambiguates of
is dbpedia-owl:wikiPageRedirects of
is dbpedia-owl:wikiPageWikiLink of
is foaf:primaryTopic of