Karekök 2 ya da kök 2, kendisi ile çarpıldığında 2'yi veren pozitif cebirsel sayıdır. 2'nin kökü mühendislikte genellikle 1.414 olarak alınsa da, gerçek değeri tam olarak bu değildir.Gösterimi√2 şeklindedir.ISO 216 standardına sahip kağıt türlerinde (A4, A0, vb.) uzunluk/genişlik oranı karekök 2'dir.

PropertyValue
dbpedia-owl:abstract
• Karekök 2 ya da kök 2, kendisi ile çarpıldığında 2'yi veren pozitif cebirsel sayıdır. 2'nin kökü mühendislikte genellikle 1.414 olarak alınsa da, gerçek değeri tam olarak bu değildir.Gösterimi√2 şeklindedir.ISO 216 standardına sahip kağıt türlerinde (A4, A0, vb.) uzunluk/genişlik oranı karekök 2'dir.
• "Pythagoras's constant" redirects here; not to be confused with Pythagoras numberThe square root of 2, often known as root 2, radical 2, or Pythagoras' constant, and written as , is the positive algebraic number that, when multiplied by itself, gives the number 2. Technically, it is called the principal square root of 2, to distinguish it from the negative number with the same property.Geometrically the square root of 2 is the length of a diagonal across a square with sides of one unit of length; this follows from the Pythagorean theorem. It was probably the first number known to be irrational.Its numerical value, truncated to 65 decimal places, is:1.41421356237309504880168872420969807856967187537694807317667973799... (sequence A002193 in OEIS). (The next digit is 0.)The quick approximation 99/70 (≈ 1.41429) for the square root of two is frequently used. Despite having a denominator of only 70, it differs from the correct value by less than 1/10,000 (approx. 7.2 × 10 −5). The approximation 665857/470832 is valid to within 1.13 x 10 -12. Its square is 2.0000000000045....
• De wortel van 2, geschreven als √2 of 2½, is het positieve reële getal dat vermenigvuldigd met zichzelf gelijk is aan het getal 2.Het is een irrationaal getal dat bij benadering gelijk is aan :1,414 213 562 373 095 048 801 688 724 209 698 078 569 671 875....De benadering 99/70 wordt veel gebruikt, ondanks de relatief eenvoudige breuk is deze correct tot en met de 4e decimaal.
dbpedia-owl:thumbnail
dbpedia-owl:wikiPageID
• 990390 (xsd:integer)
dbpedia-owl:wikiPageLength
• 64706 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
• 213 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
• 111033954 (xsd:integer)
prop-fr:année
• 1975 (xsd:integer)
• 1984 (xsd:integer)
• 1998 (xsd:integer)
• 1999 (xsd:integer)
• 2000 (xsd:integer)
• 2001 (xsd:integer)
• 2004 (xsd:integer)
prop-fr:auteurOuvrage
• Jean Christianidis
prop-fr:auteursOuvrage
• C. A. Gorini
prop-fr:collection
• MAA Notes
prop-fr:date
• 2007-04-19 (xsd:date)
prop-fr:doi
• 10.101600 (xsd:double)
prop-fr:first
• Tom M.
prop-fr:id
• Fowler1999
• Knorr1975
prop-fr:isbn
• 978 (xsd:integer)
• 198502583 (xsd:integer)
• 9027705097 (xsd:double)
prop-fr:issue
• 4 (xsd:integer)
• 9 (xsd:integer)
prop-fr:lang
• en
prop-fr:langue
• en
prop-fr:lienAuteur
• Tom M. Apostol
• Martin Gardner
prop-fr:lienPériodique
• Historia Mathematica
prop-fr:lienÉditeur
• Presses universitaires du Septentrion
prop-fr:lieu
• Oxford
prop-fr:mois
• 11 (xsd:integer)
prop-fr:nom
• Caveing
• Fowler
• Henderson
• Robson
• Apostol
• Saito
• Gardner
• Berggren
prop-fr:nomUrl
• PythagorassConstant
prop-fr:numéroDansCollection
• 53 (xsd:integer)
prop-fr:numéroÉdition
• 2 (xsd:integer)
prop-fr:oldid
• 15994985 (xsd:integer)
prop-fr:p.
• 366 (xsd:integer)
• 394 (xsd:integer)
• 841 (xsd:integer)
prop-fr:page
• 33 (xsd:integer)
• 39 (xsd:integer)
prop-fr:pages
• 374 (xsd:integer)
prop-fr:passage
• 9 (xsd:integer)
• 187 (xsd:integer)
prop-fr:prénom
• Maurice
• Martin
• David
• Eleanor
• Ken
• J.L.
prop-fr:revue
• The American Mathematical Monthly
• Historia Mathematica
prop-fr:sousTitre
• A New Reconstruction
• Recherches sur les premières mathématiques des Grecs
prop-fr:titre
• The Mathematics of Plato’s Academy
• The Evolution of the Euclidean Elements A Study of the Theory of Incommensurable Magnitudes and its Significance for Early Greek Geometry
• La figure et le nombre
• Pythagoras’s Constant
• Square Roots in the Sulbasutra
• Square Root Approximations in Old Babylonian Mathematics: YBC 7289 in Context
• Studies on proportion theory and incommensurability
• A Gardner's Workout: Training the Mind and Entertaining the Spirit
• History of Greek mathematics: A survey of recent research
• Irrationality of The Square Root of Two — A Geometric Proof
prop-fr:titreOuvrage
• Classics in the History of Greek Mathematics
• Geometry at Work: Papers in Applied Geometry
prop-fr:url
prop-fr:vol
• 25 (xsd:integer)
• 107 (xsd:integer)
prop-fr:volume
• 11 (xsd:integer)
prop-fr:vote
• BA
prop-fr:wikiPageUsesTemplate
prop-fr:year
• 1998 (xsd:integer)
• 2000 (xsd:integer)
prop-fr:éditeur
• Clarendon Press
• Presses universitaires du Septentrion
• Springer
• D. Reidel Publishing Company
• A K Peters, Ltd.
dcterms:subject
rdfs:comment
• Karekök 2 ya da kök 2, kendisi ile çarpıldığında 2'yi veren pozitif cebirsel sayıdır. 2'nin kökü mühendislikte genellikle 1.414 olarak alınsa da, gerçek değeri tam olarak bu değildir.Gösterimi√2 şeklindedir.ISO 216 standardına sahip kağıt türlerinde (A4, A0, vb.) uzunluk/genişlik oranı karekök 2'dir.
• De wortel van 2, geschreven als √2 of 2½, is het positieve reële getal dat vermenigvuldigd met zichzelf gelijk is aan het getal 2.Het is een irrationaal getal dat bij benadering gelijk is aan :1,414 213 562 373 095 048 801 688 724 209 698 078 569 671 875....De benadering 99/70 wordt veel gebruikt, ondanks de relatief eenvoudige breuk is deze correct tot en met de 4e decimaal.
• "Pythagoras's constant" redirects here; not to be confused with Pythagoras numberThe square root of 2, often known as root 2, radical 2, or Pythagoras' constant, and written as , is the positive algebraic number that, when multiplied by itself, gives the number 2.
rdfs:label
• Racine carrée de deux
• 2の平方根
• 2의 제곱근
• Karekök 2
• Négyzetgyök 2