En algèbre linéaire, un projecteur (ou une projection) est une application linéaire qu'on peut présenter de deux façons équivalentes : une projection linéaire associée à une décomposition de E comme somme de deux sous-espaces supplémentaires, c'est-à-dire qu'elle permet d'obtenir un des termes de la décomposition correspondante ; une application linéaire idempotente : elle vérifie p2 = p.Dans un espace hilbertien ou même seulement préhilbertien, une projection pour laquelle les deux supplémentaires sont orthogonaux est appelée projection orthogonale.

PropertyValue
dbpedia-owl:abstract
  • En algèbre linéaire, un projecteur (ou une projection) est une application linéaire qu'on peut présenter de deux façons équivalentes : une projection linéaire associée à une décomposition de E comme somme de deux sous-espaces supplémentaires, c'est-à-dire qu'elle permet d'obtenir un des termes de la décomposition correspondante ; une application linéaire idempotente : elle vérifie p2 = p.Dans un espace hilbertien ou même seulement préhilbertien, une projection pour laquelle les deux supplémentaires sont orthogonaux est appelée projection orthogonale.
  • In mathematics, a projection is a mapping of a set (or other mathematical structure) into a subset (or sub-structure), which is equal to its square for mapping composition (or, in other words, which is idempotent). The restriction to a subspace of a projection is also called a projection, even if the idempotence property is lost.An everyday example of a projection is the casting of shadows onto a plane (paper sheet). The projection of a point is its shadow on the paper sheet. The shadow of a point of the paper sheet is the point itself (idempotence). The shadow of a three-dimensional sphere is a circle. Originally, the notion of projection was introduced in Euclidean geometry to denote the projection of the Euclidean space of three dimensions onto a plane in it, like the shadow example. The two main projections of this kind are: The projection from a point onto a plane or central projection: If C is the point, called center of projection, the projection of a point P different from C is the intersection with the plane of the line CP. The point C and the points P such that the line CP is parallel to the plane do not have any image by the projection. The projection parallel to a direction D, onto a plane: The image of a point P is the intersection with the plane of the line parallel to D passing through P.The concept of projection in mathematics is a very old one, most likely having its roots in the phenomenon of the shadows cast by real world objects on the ground. This rudimentary idea was refined and abstracted, first in a geometric context and later in other branches of mathematics. Over time differing versions of the concept developed, but today, in a sufficiently abstract setting, we can unify these variations.In cartography, a map projection is a map of a part of the surface of the Earth onto a plane, which, in some cases, but not always, is the restriction of a projection in the above meaning. The 3D projections are also at the basis of the theory of perspective. The need for unifying the two kinds of projections and of defining the image by a central projection of any point different of the center of projection are at the origin of projective geometry. However, a projective transformation is a bijection of a projective space, a property not shared with the projections of this article.
  • Проекция (лат. projectio — выбрасывание вперёд) изображение трёхмерной фигуры на так называемой картинной (проекционной) плоскости способом, представляющим собой геометрическую идеализацию оптических механизмов зрения, фотографии, камеры-обскуры. Термин проекция в этом контексте также означает метод построения такого изображения и технические приёмы, в основе которых лежит этот метод. Широко применяется в инженерной графике, архитектуре, живописи и картографии. Изучением методов построения проекций как инженерная дисциплина занимается начертательная геометрия. обобщение проекции в первом смысле (точнее — её разновидности — параллельной проекции) для отображения точек, фигур, векторов пространства любой размерности на его подпространство любой размерности, например, кроме проекции точек трёхмерного пространства на плоскость, это может быть проекция точек трёхмерного пространства на прямую, точек плоскости на прямую, точек 7-мерного пространства на его 4-мерное подпространство и т. п., а также проекция вектора на любое подпространство исходного пространства, и в особенности, как особенно важный частный случай, на прямую или на направление. Проекция в этом смысле находит широкое применение в отношении векторов (как в элементарном контексте, так и в абстрактном), при использовании декартовых координат и т. п.
  • Projectie in de meetkunde is een bepaald soort transformatie, waarbij een hogerdimensionale ruimte tot een lagerdimensionale ruimte terug wordt gebracht. De meetkunde kent verschillende soorten projecties of projectiemethoden.
dbpedia-owl:wikiPageID
  • 176873 (xsd:integer)
dbpedia-owl:wikiPageInterLanguageLink
dbpedia-owl:wikiPageLength
  • 6477 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 25 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 109756685 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • En algèbre linéaire, un projecteur (ou une projection) est une application linéaire qu'on peut présenter de deux façons équivalentes : une projection linéaire associée à une décomposition de E comme somme de deux sous-espaces supplémentaires, c'est-à-dire qu'elle permet d'obtenir un des termes de la décomposition correspondante ; une application linéaire idempotente : elle vérifie p2 = p.Dans un espace hilbertien ou même seulement préhilbertien, une projection pour laquelle les deux supplémentaires sont orthogonaux est appelée projection orthogonale.
  • Projectie in de meetkunde is een bepaald soort transformatie, waarbij een hogerdimensionale ruimte tot een lagerdimensionale ruimte terug wordt gebracht. De meetkunde kent verschillende soorten projecties of projectiemethoden.
  • In mathematics, a projection is a mapping of a set (or other mathematical structure) into a subset (or sub-structure), which is equal to its square for mapping composition (or, in other words, which is idempotent). The restriction to a subspace of a projection is also called a projection, even if the idempotence property is lost.An everyday example of a projection is the casting of shadows onto a plane (paper sheet). The projection of a point is its shadow on the paper sheet.
  • Проекция (лат. projectio — выбрасывание вперёд) изображение трёхмерной фигуры на так называемой картинной (проекционной) плоскости способом, представляющим собой геометрическую идеализацию оптических механизмов зрения, фотографии, камеры-обскуры. Термин проекция в этом контексте также означает метод построения такого изображения и технические приёмы, в основе которых лежит этот метод. Широко применяется в инженерной графике, архитектуре, живописи и картографии.
rdfs:label
  • Projecteur (mathématiques)
  • Projectie (wiskunde)
  • Projection (mathematics)
  • Projeção (matemática)
  • Proyección (matemáticas)
  • Rzut (geometria)
  • Проекция (геометрия)
  • 射影
owl:sameAs
http://www.w3.org/ns/prov#wasDerivedFrom
foaf:isPrimaryTopicOf
is dbpedia-owl:wikiPageDisambiguates of
is dbpedia-owl:wikiPageRedirects of
is dbpedia-owl:wikiPageWikiLink of
is foaf:primaryTopic of