La piézoélectricité (du grec πιέζειν, piézein presser, appuyer) est la propriété que possèdent certains corps de se polariser électriquement sous l’action d’une contrainte mécanique et réciproquement de se déformer lorsqu’on leur applique un champ électrique. Les deux effets sont indissociables. Le premier est appelé effet piézoélectrique direct ; le second effet piézoélectrique inverse.Cette propriété trouve un très grand nombre d’applications dans l’industrie et la vie quotidienne.

PropertyValue
dbpedia-owl:abstract
  • La piézoélectricité (du grec πιέζειν, piézein presser, appuyer) est la propriété que possèdent certains corps de se polariser électriquement sous l’action d’une contrainte mécanique et réciproquement de se déformer lorsqu’on leur applique un champ électrique. Les deux effets sont indissociables. Le premier est appelé effet piézoélectrique direct ; le second effet piézoélectrique inverse.Cette propriété trouve un très grand nombre d’applications dans l’industrie et la vie quotidienne. Une application parmi les plus familières est l’allume-gaz. Dans un allume-gaz, la pression exercée produit une tension électrique qui se décharge brutalement sous forme d’étincelles : c'est une application de l’effet direct. De manière plus générale, l’effet direct peut être mis à profit dans la réalisation de capteurs (capteur de pression etc.) tandis que l’effet inverse permet de réaliser des actionneurs (injecteurs à commande piézoélectrique en automobile, nanomanipulateur…). Les matériaux piézoélectriques sont très nombreux. Le plus connu est sans doute le quartz, toujours utilisé aujourd’hui dans les montres pour créer des impulsions d’horloge. Mais ce sont des céramiques synthétiques, les PZT qui sont le plus largement utilisées aujourd’hui dans l'industrie. En 2010, le marché des dispositifs piézoélectriques est estimé à 14,8 milliards de dollars.Soulignons enfin que l’effet piézoélectrique inverse ne doit pas être confondu avec l’électrostriction qui est un effet du second ordre et existe dans tous les matériaux.
  • Piezoelektrický jev (z řeckého piezein (πιέζειν) – tlačit) je schopnost krystalu generovat elektrické napětí při jeho deformování, popřípadě jev opačný, kdy se krystal v elektrickém napětí deformuje. Může se vyskytovat pouze u krystalů, které nemají střed symetrie. Nejznámější piezoelektrickou látkou je monokrystalický křemen, křišťál. Poprvé byl piezoelektrický jev pozorován u Seignettovy soli (tetrahydrát vínanu draselno-sodného).
  • Пьезоэлектри́ческий эффе́кт — эффект возникновения поляризации диэлектрика под действием механических напряжений (прямой пьезоэлектрический эффект). Существует и обратный пьезоэлектрический эффект — возникновение механических деформаций под действием электрического поля.При прямом пьезоэффекте деформация пьезоэлектрического образца приводит к возникновению электрического напряжения между поверхностями деформируемого твердого тела, при обратном пьезоэффекте приложение напряжения к телу вызывает его деформацию. Пьезоэлектрические вещества всегда обладают одновременно и прямым, и обратным пьезоэффектом. Не обязательно, чтобы вещество было монокристаллом, эффект наблюдается и в поликристаллических веществах, предварительно поляризованных сильным электрическим полем во время кристаллизации, или при фазовом переходе в точке температуры Кюри при охлаждении для сегнетоэлектриков (например, керамические пьезоэлектрические материалы на основе цирконата-титаната свинца) при наложенном внешнем электрическом поле.Прямой эффект был открыт братьями Жаком и Пьером Кюри в 1880 году. Обратный эффект был предугадан в 1881 году Липпманом исходя из термодинамических соображений. В том же году экспериментально открыт братьями Кюри.Исследования пьезоэффекта показали, что он объясняется свойством элементарной ячейки структуры материала. Так как элементарная ячейка является наименьшей симметричной единицей материала, путем ее многократного повторения можно получить микроскопический кристалл. Необходимой предпосылкой для появления пьезоэффекта является отсутствие центра симметрии в элементарной ячейки .Пьезоэффект нельзя путать с электрострикцией. В отличие от электрострикции, прямой пьезоэффект наблюдается только в кристаллах без центра симметрии. Хотя в классе 432 кубической сингонии нет центра симметрии, пьезоэлектричество в нём также невозможно. Следовательно, пьезоэффект может наблюдаться у диэлектрических кристаллов, принадлежащих только к одному из 20 классов точечных групп.Пьезоэлектрический эффект нельзя путать с пьезорезистивным эффектом (англ.)русск..
  • Piezoelectricity /piˌeɪzoʊˌilɛkˈtrɪsɪti/ is the electric charge that accumulates in certain solid materials (such as crystals, certain ceramics, and biological matter such as bone, DNA and various proteins) in response to applied mechanical stress. The word piezoelectricity means electricity resulting from pressure. It is derived from the Greek piezo or piezein (πιέζειν), which means to squeeze or press, and electric or electron (ήλεκτρον), which stands for amber, an ancient source of electric charge. Piezoelectricity was discovered in 1880 by French physicists Jacques and Pierre Curie.The piezoelectric effect is understood as the linear electromechanical interaction between the mechanical and the electrical state in crystalline materials with no inversion symmetry. The piezoelectric effect is a reversible process in that materials exhibiting the direct piezoelectric effect (the internal generation of electrical charge resulting from an applied mechanical force) also exhibit the reverse piezoelectric effect (the internal generation of a mechanical strain resulting from an applied electrical field). For example, lead zirconate titanate crystals will generate measurable piezoelectricity when their static structure is deformed by about 0.1% of the original dimension. Conversely, those same crystals will change about 0.1% of their static dimension when an external electric field is applied to the material. The inverse piezoelectric effect is used in production of ultrasonic sound waves.Piezoelectricity is found in useful applications such as the production and detection of sound, generation of high voltages, electronic frequency generation, microbalances, to drive an ultrasonic nozzle and ultrafine focusing of optical assemblies. It is also the basis of a number of scientific instrumental techniques with atomic resolution, the scanning probe microscopies such as STM, AFM, MTA, SNOM, etc., and everyday uses such as acting as the ignition source for cigarette lighters and push-start propane barbecues.
  • Het piëzo-elektrisch effect is het verschijnsel dat kristallen van bepaalde materialen onder invloed van druk (bijvoorbeeld buiging) een elektrische spanning produceren en andersom: vervormen als er een elektrische spanning op wordt aangelegd. Het woord piëzo is afgeleid van het Griekse woord piezein, wat drukken betekent.
  • Пиезоелектричния ефект е ефект на възникване на поляризация на диелектрик под въздействие на механично напрежение (нарича се пряк пиезоелектрически ефект). Съществува и обратен пиезоелектричен ефект - възникване на механични деформации под въздействие на електрическо поле.Прекият и обратният пиезоелектричен ефект се наблюдават в един и същ вид кристали - т.нар. пиезоелектрици. Този ефект е открит от братята Жак и Пиер Кюри през 1880 г. Обратният ефект е бил предсказан през 1881 г. от Липман въз основа на термодинамически съображения и експериментално доказан от братята Кюри през същата година.Пиезоефектът не трябва да се бърка с електрострикцията. За разлика от електрострикцията, прекият пиезоефект се наблюдава само в кристали без центр на симетрията. Пиезоефектът се наблюдава само при диелектрически кристали отнасящи се към един от 20-те класа на точковите групи.
  • La piezoelectricitat és la capacitat de certs cristalls de generar una diferència de potencial quan se'ls sotmet a una deformació mecànica. La paraula deriva del grec piezein, que significa «esprémer» o «estrènyer». L'efecte piezoelèctric és reversible: els cristalls piezoelèctrics es poden deformar quan se'ls aplica una diferència de potencial externa; la deformació resultant és, però, molt petita, d'aproximadament un 0,1% de les dimensions originals. El 1880, els germans Pierre Curie i Jacques Curie prediren i demostraren la piezoelectricitat en diversos cristalls, entre els quals la turmalina, el quars i el topazi. L'efecte invers fou predit per Lippmann el 1881 i els germans Curie acosneguiren observar-lo experimentalment poc després.A més dels materials citats abans, molts altres exhibeixen aquest efecte. Es poden citar els cristalls semblants al quars, com la sal de La Rocelle, la berlinita (AlPO4) i l'ortofosfat de gali (GaPO4), els materials ceràmics amb perovskita o estructures tungstè-bronze (BaTiO3, KNbO3, LiNbO3, LiTaO3, BiFeO3, NaxWO3, Ba2NaNb5O5, Pb2KNb5O15).Els polímers com la goma, la llana, el cabell i la seda exhibeixen una lleugera piezoelectricitat. Per altra banda, el polímer fluorur de polivinilidè, PVDF, presenta una piezoelectricitat considerablement més gran que la del quars.Poden distingir-se també dos grups de materials: els que posseeixen caràcter piezoelèctric de forma natural (quars, turmalina...) i els anomenats ferroelèctrics, que presenten propietats piezoelèctriques després de ser sotmesos a una polarització (tantalat de liti, nitrat de liti, bernilita en forma de materials monocristal·lins i ceràmiques o polímers polars sota forma de microcristalls orientats).
  • Piezoelektrik adalah suatu kemampuan yang dimiliki sebagian kristal maupun bahan-bahan tertentu lainnya yang dapat menghasilkan suatu arus listrik jika mendapatkan perlakuan tekanan.
  • Piezoeletricidade é a capacidade de alguns cristais gerarem tensão elétrica por resposta a uma pressão mecânica. O termo piezoeletricidade provém do grego (piezein), que significa, apertar/pressionar. Referente a geração de corrente elétrica, juntou-se a designação eletricidade, de modo que piezoeletricidade é interpretado como a produção de energia elétrica devido a compressão sobre determinados materiais.
  • A piezoelektromosság olyan elektromos jelenség, melynek során bizonyos anyagokon (kristály, kerámia) összenyomás hatására elektromos feszültség keletkezik, illetve elektromos feszültség hatására alakváltozás jön létre.Ilyen kristály például a kvarc (SiO2). Egy piezoelektromos kristály sajátrezgését nagyon pontosan tartja, ez adja a kvarcórák időalapját.A piezoelektromosság és elektrostrikció felfedezése Pierre Curie és Jacques Curie nevéhez fűződik, akik 1880-ban felfedezték, hogy bizonyos kristályokon (kvarc, turmalin vagy a Rochelle-só (kálium-nátrium-tartarát KNaC4H4O6·4H2O)) meghatározott tengelyek mentén alkalmazott nyomás elektromos töltések megjelenését okozza a kristály felületén. A következő évben felfedezték ennek fordítottját, az elektrostrikciót: amikor elektromos áramot alkalmaztak a kristályon, az bizonyos tengelyek mentén megváltoztatta méretét.Az egyik leggyakrabban alkalmazott kristály a kvarc, mely hatszöges rendszerben kristályosodik, ahol a rácspontokban pozitív és negatív ionok helyezkednek el felváltva.Egy ilyen kristályt két fémlap közé helyezve, majd összenyomva azt, a fémlemezek töltöttekké válnak, amivel elektromos szikrát lehet gerjeszteni (öngyújtó, gázgyújtó). A piezoelektromos anyagoknak ezt a tulajdonságát kihasználva készítenek kis méretű generátorokat. Jelentős a katonai hasznosítása. Már az első világháborút követő években a jelenséget felhasználták a szonár megalkotásához. Másik fontos katonai alkalmazási terület a lövedékek gyújtói.Ennek a jelenségnek a fordítottja az elektrostrikció. Lényege, hogy villamos térbe helyezve egy kvarckristályt annak felülete deformálódik, egyik irányba megnyúlik, a másikba összenyomódik. A rákapcsolt feszültségnek köszönhetően e megnyúlás és összenyomódás többször előfordul, mely hatására rezgőmozgást végez a kristály. Ezt a mozgást szabályozva eljuthatunk a kvarcóra működésének alapjaihoz. Ezt az elvet alkalmazzák a ma használatos dízel injektorok, ez a piezotulajdonságú anyagok egyik fő alkalmazási területe. A piezo-jelenség gyorsaságának köszönhetően az ilyen típusú injektorok mozgása nagyon gyorsan, pontosan vezérelhető, nagyrészt ennek köszönhető, hogy a modern dízelmotorok mind tisztaságban, mind teljesítményben felvehetik a versenyt benzines társaikkal, miközben fogyasztásuk elmarad tőle.
  • Piezoelektrik özelliği, (özellikle kristaller ve belirli kristaller; kemik gibi) bazı malzemelere uygulanan mekanik basınç sonucunda, malzemenin elekrik alan ya da elektrik potansiyeldeğiştirme yeteneğidir. Bu etki, malzemenin içindeki polarizasyon yoğunluğundaki değişmeyle doğrudan alakalıdır. Eğer malzeme kısa devre değilse, uygulanan stress malzemede bir voltaj meydana getirir. Piezo kelimesi, Yunanca’dan türetilmiştir; “sıkıştırmak, basınç uygulamak” anlamlarına gelmektedir. Piezoelektrik malzemeler terslenebilirdir; yani “direk piezoelektrik etki” sergileyen (stress uygulandığında elektrik potansiyel üreten) malzemeler, ters piezoelektirk etki (uygulanan elektrik alan sonucunda stress-strain üretimi) de gösterirler. Örneğin, kurşun zirkonat titanat kristalleri, orijinal boyutundan %0,1 oranına kadar şekil değiştirebilirler. Bu etkinin “sesin oluşturulması ve algılanması”, “yüksek voltajlar oluşturulması”, “elektronik frekans yaratılması”, “mikrobalans”, ve "optik çevrimcilerin aşırı ince odaklanması” gibi kullanışlı uygulamaları vardır. Aynı zamanda atomik çözünme sonucunda bilimsel birçok tekniğin (taramalı prop mikroskoplar olan STM, AFM, MTA, SNOM gibi) temelini oluşturmakla birlikte, günlük kullanımda ateşleyici olarak çakmaklarda ve barbekülerde kullanılmaktadır.
  • La piezoelectricidad (del griego piezein, "estrujar o apretar") es un fenómeno que ocurre en determinados cristales que, al ser sometidos a tensiones mecánicas, en su masa adquieren una polarización eléctrica y aparecen una diferencia de potencial y cargas eléctricas en su superficie.Este fenómeno también ocurre a la inversa: se deforman bajo la acción de fuerzas internas al ser sometidos a un campo eléctrico. El efecto piezoeléctrico es normalmente reversible: al dejar de someter los cristales a un voltaje exterior o campo eléctrico, recuperan su forma. Los materiales piezoeléctricos son cristales naturales o sintéticos que carecen de centro de simetría. Una compresión o un cizallamiento provocan disociación de los centros de gravedad de las cargas eléctricas, tanto positivas como negativas. Como consecuencia, en la masa aparecen dipolos elementales y, por influencia, en las superficies enfrentadas surgen cargas de signo opuesto.
  • Die Piezoelektrizität, auch piezoelektrischer Effekt oder kurz Piezoeffekt, veraltet: Piëzo- (altgr. πιέζειν piezein ‚drücken‘, ‚pressen‘ und ἤλεκτρον ēlektron ‚Bernstein‘), beschreibt die Änderung der elektrischen Polarisation und somit das Auftreten einer elektrischen Spannung an Festkörpern, wenn sie elastisch verformt werden (direkter Piezoeffekt). Umgekehrt verformen sich Materialien bei Anlegen einer elektrischen Spannung (inverser Piezoeffekt).
  • 압전기(Piezoelectricity, /piˌeɪzoʊˌilɛkˈtrɪsɪti/)란 기계적 일그러짐을 가함으로써 유전 분극을 일으키는 현상을 말한다. 1차 압전 효과라고도 하며, 역으로 전계를 가하여 일그러짐을 일으키는 현상을 역압전 효과 또는 2차 압전 효과라고 한다. 후자는 전기 일그러짐이지만, 역압전 효과는 전계 E의 1차 함수가 되며, E²에 비례하는 순수한 전기 일그러짐과 구분할 때도 있다.
  • 圧電効果(あつでんこうか piezoelectric effect )とは、物質(特に水晶や特定のセラミック)に圧力(力)を加えると、圧力に比例した分極(表面電荷)が現れる現象。また、逆に電界を印加すると圧電体自体が変形する現象は逆圧電効果とも言われるが、この現象も含めて圧電効果と呼ぶ場合もある。これらの現象を示す物質は圧電体と呼ばれ、ライターやガスコンロの点火、ソナー、スピーカー等に圧電素子として幅広く用いられている。圧電体は誘電体の一種である。アクチュエータに用いた場合、発生力は比較的大きいが、変位が小さくドリフトが大きい。また、駆動電圧も高い。STMやAFMのプローブまたは試料の制御などnmオーダーの高精度な位置決めに用いられることが多い。なお、piezoelectricity は圧電気のほかピエゾ電気とも訳され、ギリシャ語で「圧搾する」、または「押す(press)」を意味するpiezein (πιέζειν)からハンケルにより名付けられた。
  • Piezoelektryki lub materiały piezoelektryczne – kryształy, w których obserwowane jest zjawisko piezoelektryczne, polegające na pojawieniu się pod wpływem naprężeń mechanicznych ładunków elektrycznych na ich powierzchni.Piezoelektryki przejawiają również odwrotne zjawisko piezoelektryczne, polegające na zmianie wymiarów kryształu pod wpływem przyłożonego pola elektrycznego. Zjawisko to bywa (błędnie) nazywane elektrostrykcją.Piezoelektrykami mogą być zarówno monokryształy (np. kwarc) jak i polikryształy, których komórki elementarne nie mają środka symetrii. Istnieją również ceramiki i substancje organiczne o właściwościach piezoelektrycznych, takie jak polimery, DNA, białka, kości.Niektóre piezoelektryki są również piroelektrykami i ferroelektrykami.
  • La piezoelettricità (la parola deriva dal greco πιέζειν, premere, comprimere) è la proprietà di alcuni cristalli di generare una differenza di potenziale quando sono soggetti ad una deformazione meccanica. Tale effetto è reversibile e si verifica su scale dell'ordine dei nanometri.Il funzionamento di un cristallo piezoelettrico è abbastanza semplice: quando viene applicata una pressione (o decompressione) esterna, si posizionano, sulle facce opposte, cariche di segno opposto. Il cristallo, così, si comporta come un condensatore al quale è stata applicata una differenza di potenziale. Se le due facce vengono collegate tramite un circuito esterno, viene quindi generata una corrente elettrica detta corrente piezoelettrica. Al contrario, quando si applica una differenza di potenziale al cristallo, esso si espande o si contrae.Dal punto di vista della struttura cristallina, i materiali piezoelettrici hanno normalmente varie configurazioni geometriche equivalenti dal punto di vista dell'energia, cioè della stabilità del sistema, ma orientate diversamente. Ad esempio il titanato di bario (BaTiO3) ha una cella di forma romboidale che può allungarsi lungo uno qualsiasi dei tre assi principali. Per fargli acquisire proprietà piezoelettriche il materiale viene riscaldato e immerso in un campo elettrico in modo da farlo polarizzare e raffreddare. Alla fine del processo il materiale ha tutte le celle deformate nella stessa direzione; è importante notare che solo lungo questa direzione si hanno proprietà piezoelettriche.Al contrario, quando si applica una differenza di potenziale al cristallo, esso si espande o si contrae lungo un asse determinato provocando una vibrazione anche violenta. L’espansione volumetrica è facilmente pilotabile ed è strettamente dipendente dalla stimolazione elettrica.
dbpedia-owl:thumbnail
dbpedia-owl:wikiPageExternalLink
dbpedia-owl:wikiPageID
  • 578931 (xsd:integer)
dbpedia-owl:wikiPageLength
  • 81072 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 243 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 109890107 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
prop-fr:année
  • 1950 (xsd:integer)
  • 1971 (xsd:integer)
  • 1974 (xsd:integer)
  • 1977 (xsd:integer)
  • 1996 (xsd:integer)
  • 2006 (xsd:integer)
  • 2007 (xsd:integer)
  • 2008 (xsd:integer)
  • 2010 (xsd:integer)
prop-fr:auteur
  • Warren P. Mason
  • Ahmad Safari, E. Koray Akdogan
  • B. Jaffe, W. Cook and H. Jaffe
  • Kenji Uchino
  • M.E. Lines and A.M. Glass
  • Michel Brissaud
  • Shaul Katzir
  • Takuro Ikeda
  • Jan Tichý, Jirí Erhart, Erwin Kittinger, Jana Prívratská
prop-fr:auteurs
  • E Dieulesaint, D Royer
prop-fr:commentaire
  • Le contenu de cet ouvrage est partiellement repris par les mêmes auteurs dans .
  • Cet ouvrage est issu du mémoire de doctorat de l'auteur. Certaines parties ont été publiées indépendamment dans des revues :
prop-fr:consultéLe
  • 14 (xsd:integer)
prop-fr:directeur
  • W. Heywang, Karl Lubitz et Wolfram Wersing
prop-fr:fr
  • Wilhelm Hankel
prop-fr:id
  • Brissaud2007
  • HistoirePiezoSystems
  • Ikeda1996
  • Jaffe1971
  • Katzir2006
  • LinesAndGlass1977
  • RoyerDieulesaint
  • Safari2008
  • Springer2008
  • Springer2010
  • Uchino2010
prop-fr:isbn
  • 0 (xsd:integer)
  • 978 (xsd:integer)
  • 387765409 (xsd:integer)
  • 1402046693 (xsd:integer)
  • 1845699750 (xsd:integer)
  • 3540684271 (xsd:double)
prop-fr:lang
  • de
  • en
prop-fr:lieu
  • Lausanne
  • New York
  • London
prop-fr:lireEnLigne
prop-fr:titre
  • Piezoelectric Crystals and their Application to Ultrasonics
  • Matériaux piézoélectriques : caractérisation, modélisation et vibration
  • Fundamentals of Piezoelectric Sensorics: Mechanical, Dielectric, and Thermodynamical Properties of Piezoelectric Materials
  • Advanced Piezoelectric Materials
  • Fundamentals of Piezoelectricity
  • Piezoelectric Ceramics
  • Piezoelectricity
  • Une histoire de la piézoélectricité
  • Piezoelectric and Acoustic Materials for Transducer Applications
  • Ondes élastiques dans les solides - Application au traitement du signal
  • Principles and Applications of Ferroelectrics and Related Materials
  • The Beginnings of Piezoelectricity: A Study in Mundane Physics
prop-fr:trad
  • Wilhelm Gottlieb Hankel
prop-fr:url
prop-fr:wikiPageUsesTemplate
prop-fr:éditeur
  • Oxford University Press
  • Presses polytechniques et universitaires romandes
  • Springer
  • Elsevier
  • Van Nostrand
  • Academic Press Inc.
  • Masson et Cie
dcterms:subject
rdf:type
rdfs:comment
  • La piézoélectricité (du grec πιέζειν, piézein presser, appuyer) est la propriété que possèdent certains corps de se polariser électriquement sous l’action d’une contrainte mécanique et réciproquement de se déformer lorsqu’on leur applique un champ électrique. Les deux effets sont indissociables. Le premier est appelé effet piézoélectrique direct ; le second effet piézoélectrique inverse.Cette propriété trouve un très grand nombre d’applications dans l’industrie et la vie quotidienne.
  • Piezoelektrický jev (z řeckého piezein (πιέζειν) – tlačit) je schopnost krystalu generovat elektrické napětí při jeho deformování, popřípadě jev opačný, kdy se krystal v elektrickém napětí deformuje. Může se vyskytovat pouze u krystalů, které nemají střed symetrie. Nejznámější piezoelektrickou látkou je monokrystalický křemen, křišťál. Poprvé byl piezoelektrický jev pozorován u Seignettovy soli (tetrahydrát vínanu draselno-sodného).
  • Het piëzo-elektrisch effect is het verschijnsel dat kristallen van bepaalde materialen onder invloed van druk (bijvoorbeeld buiging) een elektrische spanning produceren en andersom: vervormen als er een elektrische spanning op wordt aangelegd. Het woord piëzo is afgeleid van het Griekse woord piezein, wat drukken betekent.
  • Piezoelektrik adalah suatu kemampuan yang dimiliki sebagian kristal maupun bahan-bahan tertentu lainnya yang dapat menghasilkan suatu arus listrik jika mendapatkan perlakuan tekanan.
  • Piezoeletricidade é a capacidade de alguns cristais gerarem tensão elétrica por resposta a uma pressão mecânica. O termo piezoeletricidade provém do grego (piezein), que significa, apertar/pressionar. Referente a geração de corrente elétrica, juntou-se a designação eletricidade, de modo que piezoeletricidade é interpretado como a produção de energia elétrica devido a compressão sobre determinados materiais.
  • Die Piezoelektrizität, auch piezoelektrischer Effekt oder kurz Piezoeffekt, veraltet: Piëzo- (altgr. πιέζειν piezein ‚drücken‘, ‚pressen‘ und ἤλεκτρον ēlektron ‚Bernstein‘), beschreibt die Änderung der elektrischen Polarisation und somit das Auftreten einer elektrischen Spannung an Festkörpern, wenn sie elastisch verformt werden (direkter Piezoeffekt). Umgekehrt verformen sich Materialien bei Anlegen einer elektrischen Spannung (inverser Piezoeffekt).
  • 압전기(Piezoelectricity, /piˌeɪzoʊˌilɛkˈtrɪsɪti/)란 기계적 일그러짐을 가함으로써 유전 분극을 일으키는 현상을 말한다. 1차 압전 효과라고도 하며, 역으로 전계를 가하여 일그러짐을 일으키는 현상을 역압전 효과 또는 2차 압전 효과라고 한다. 후자는 전기 일그러짐이지만, 역압전 효과는 전계 E의 1차 함수가 되며, E²에 비례하는 순수한 전기 일그러짐과 구분할 때도 있다.
  • 圧電効果(あつでんこうか piezoelectric effect )とは、物質(特に水晶や特定のセラミック)に圧力(力)を加えると、圧力に比例した分極(表面電荷)が現れる現象。また、逆に電界を印加すると圧電体自体が変形する現象は逆圧電効果とも言われるが、この現象も含めて圧電効果と呼ぶ場合もある。これらの現象を示す物質は圧電体と呼ばれ、ライターやガスコンロの点火、ソナー、スピーカー等に圧電素子として幅広く用いられている。圧電体は誘電体の一種である。アクチュエータに用いた場合、発生力は比較的大きいが、変位が小さくドリフトが大きい。また、駆動電圧も高い。STMやAFMのプローブまたは試料の制御などnmオーダーの高精度な位置決めに用いられることが多い。なお、piezoelectricity は圧電気のほかピエゾ電気とも訳され、ギリシャ語で「圧搾する」、または「押す(press)」を意味するpiezein (πιέζειν)からハンケルにより名付けられた。
  • La piezoelectricitat és la capacitat de certs cristalls de generar una diferència de potencial quan se'ls sotmet a una deformació mecànica. La paraula deriva del grec piezein, que significa «esprémer» o «estrènyer». L'efecte piezoelèctric és reversible: els cristalls piezoelèctrics es poden deformar quan se'ls aplica una diferència de potencial externa; la deformació resultant és, però, molt petita, d'aproximadament un 0,1% de les dimensions originals.
  • Пьезоэлектри́ческий эффе́кт — эффект возникновения поляризации диэлектрика под действием механических напряжений (прямой пьезоэлектрический эффект).
  • La piezoelettricità (la parola deriva dal greco πιέζειν, premere, comprimere) è la proprietà di alcuni cristalli di generare una differenza di potenziale quando sono soggetti ad una deformazione meccanica. Tale effetto è reversibile e si verifica su scale dell'ordine dei nanometri.Il funzionamento di un cristallo piezoelettrico è abbastanza semplice: quando viene applicata una pressione (o decompressione) esterna, si posizionano, sulle facce opposte, cariche di segno opposto.
  • Piezoelektryki lub materiały piezoelektryczne – kryształy, w których obserwowane jest zjawisko piezoelektryczne, polegające na pojawieniu się pod wpływem naprężeń mechanicznych ładunków elektrycznych na ich powierzchni.Piezoelektryki przejawiają również odwrotne zjawisko piezoelektryczne, polegające na zmianie wymiarów kryształu pod wpływem przyłożonego pola elektrycznego. Zjawisko to bywa (błędnie) nazywane elektrostrykcją.Piezoelektrykami mogą być zarówno monokryształy (np.
  • Piezoelektrik özelliği, (özellikle kristaller ve belirli kristaller; kemik gibi) bazı malzemelere uygulanan mekanik basınç sonucunda, malzemenin elekrik alan ya da elektrik potansiyeldeğiştirme yeteneğidir. Bu etki, malzemenin içindeki polarizasyon yoğunluğundaki değişmeyle doğrudan alakalıdır. Eğer malzeme kısa devre değilse, uygulanan stress malzemede bir voltaj meydana getirir. Piezo kelimesi, Yunanca’dan türetilmiştir; “sıkıştırmak, basınç uygulamak” anlamlarına gelmektedir.
  • La piezoelectricidad (del griego piezein, "estrujar o apretar") es un fenómeno que ocurre en determinados cristales que, al ser sometidos a tensiones mecánicas, en su masa adquieren una polarización eléctrica y aparecen una diferencia de potencial y cargas eléctricas en su superficie.Este fenómeno también ocurre a la inversa: se deforman bajo la acción de fuerzas internas al ser sometidos a un campo eléctrico.
  • A piezoelektromosság olyan elektromos jelenség, melynek során bizonyos anyagokon (kristály, kerámia) összenyomás hatására elektromos feszültség keletkezik, illetve elektromos feszültség hatására alakváltozás jön létre.Ilyen kristály például a kvarc (SiO2).
  • Пиезоелектричния ефект е ефект на възникване на поляризация на диелектрик под въздействие на механично напрежение (нарича се пряк пиезоелектрически ефект). Съществува и обратен пиезоелектричен ефект - възникване на механични деформации под въздействие на електрическо поле.Прекият и обратният пиезоелектричен ефект се наблюдават в един и същ вид кристали - т.нар. пиезоелектрици. Този ефект е открит от братята Жак и Пиер Кюри през 1880 г. Обратният ефект е бил предсказан през 1881 г.
  • Piezoelectricity /piˌeɪzoʊˌilɛkˈtrɪsɪti/ is the electric charge that accumulates in certain solid materials (such as crystals, certain ceramics, and biological matter such as bone, DNA and various proteins) in response to applied mechanical stress. The word piezoelectricity means electricity resulting from pressure.
rdfs:label
  • Piézoélectricité
  • Piezoelectricidad
  • Piezoelectricitat
  • Piezoelectricity
  • Piezoelektrický jev
  • Piezoelektrik
  • Piezoelektrik
  • Piezoelektrizität
  • Piezoelektromosság
  • Piezoelektryki
  • Piezoeletricidade
  • Piezoelettricità
  • Piëzo-elektrisch effect
  • Пиезоелектричен ефект
  • Пьезоэлектрический эффект
  • 圧電効果
  • 압전기
owl:sameAs
http://www.w3.org/ns/prov#wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbpedia-owl:knownFor of
is dbpedia-owl:wikiPageRedirects of
is dbpedia-owl:wikiPageWikiLink of
is skos:subject of
is foaf:primaryTopic of