En mathématiques et plus précisément en analyse fonctionnelle, deux normes équivalentes sont deux normes sur un même espace vectoriel E pour lesquelles les topologies induites sur E sont identiques. Cette relation d'équivalence sur l'ensemble des normes sur E traduit l'équivalence des distances associées. Pour des distances associées à des normes, les diverses notions d'équivalence de distances coïncident.

PropertyValue
dbpedia-owl:abstract
  • En mathématiques et plus précisément en analyse fonctionnelle, deux normes équivalentes sont deux normes sur un même espace vectoriel E pour lesquelles les topologies induites sur E sont identiques. Cette relation d'équivalence sur l'ensemble des normes sur E traduit l'équivalence des distances associées. Pour des distances associées à des normes, les diverses notions d'équivalence de distances coïncident. Ainsi, si deux normes sont équivalentes alors l'uniforme continuité d'une application de E dans un espace métrique, ou le fait qu'une suite soit de Cauchy pour une norme, implique cette propriété pour l'autre.
dbpedia-owl:wikiPageID
  • 225903 (xsd:integer)
dbpedia-owl:wikiPageLength
  • 6771 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 40 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 103902985 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • En mathématiques et plus précisément en analyse fonctionnelle, deux normes équivalentes sont deux normes sur un même espace vectoriel E pour lesquelles les topologies induites sur E sont identiques. Cette relation d'équivalence sur l'ensemble des normes sur E traduit l'équivalence des distances associées. Pour des distances associées à des normes, les diverses notions d'équivalence de distances coïncident.
rdfs:label
  • Norme équivalente
owl:sameAs
http://www.w3.org/ns/prov#wasDerivedFrom
foaf:isPrimaryTopicOf
is dbpedia-owl:wikiPageRedirects of
is dbpedia-owl:wikiPageWikiLink of
is foaf:primaryTopic of