En mathématiques, un nombre normal est un nombre réel tel que la fréquence d'apparition de tout n-uplet dans la suite de ses « décimales » dans toute base est équirépartie.↑ Jean-Paul Delahaye, Le fascinant nombre π, Belin,‎ 1997 [détail des éditions].

PropertyValue
dbpedia-owl:abstract
  • En mathématiques, un nombre normal est un nombre réel tel que la fréquence d'apparition de tout n-uplet dans la suite de ses « décimales » dans toute base est équirépartie.
  • En matemáticas, un número normal es un número real cuyas cifras en cualquier base están distribuidas siguiendo una distribución uniforme, siendo todas las cifras igualmente probables, así como todos los pares, tríos, etc. Las cifras de ese número son tanto los de su parte entera como la sucesión infinita de dígitos que hay detrás de la coma o parte fraccionaria.
  • In de wiskunde is een normaal getal een reëel getal met oneindig veel decimalen waarvoor geldt dat elke cijferreeks bij benadering even vaak voorkomt als alle andere cijferreeksen van dezelfde lengte. Dit moet waar zijn voor elk talstelsel waarmee het getal kan worden uitgeschreven. Hoewel bewezen kan worden dat bijna alle getallen normaal zijn, is dat bewijs voor concrete gevallen meestal niet te geven. Zo bestaat het vermoeden dat getallen zoals √2, π en e normaal zijn, maar sluitend bewijs daarvoor ontbreekt.
  • Normális szám a k pozitív egész számhoz viszonyítva olyan valós szám, amelynek k-adostört (pl. tizedestört) alakjának számjegyei a végtelenségig véletlenszerűen váltakoznak. A racionális számok e laza megfogalmazás szerint nem tűnnek normálisnak, hiszen számjegyeik vagy végtelen sok nullával fejeződnek be, vagy egy megadott mintázat szerint ismétlődnek a végtelenségig.
  • En matemàtiques, s'anomena nombre normal a aquell nombre real tal que en les seves xifres qualsevol patró de nombres finit hi apareix amb la freqüència limitadora esperada per una distribució uniforme discreta, independentment de la base en la que es representi el nombre. Aquest fet permet demostrar trivialment que qualsevol cadena d'enters apareixerà tantes vegades com es vulgui dins la representació del nombre. Els nombres normals són un subconjunt dels nombres irracionals. Si un nombre compleix aquesta propietat en la seva representació en una base b, s'anomena b-normal.El concepte fou introduït pel matemàtic francés Émile Borel l'any 1909. Mitjançant el lema de Borel-Cantelli, va demostrar el teorema del nombre normal: quasi per tot nombre real, el nombre és normal. És a dir, el conjunt de nombres no normals té mesura zero. Aquest teorema estableix l'existència de nombres normals, però no és constructiu. El conjunt de nombres normals és, però, no numerable.
  • 数学における正規数(せいきすう、normal number)とは、無限小数表示において数字が一様に分布しており、数字の列が現れる頻度に偏りがないという性質を持つ実数である。より正確な定義については「定義」の節を参照のこと。r 進法での表示についてこの性質を持つ数を r 進正規数という。単に正規数と述べた場合は、2 以上の任意の整数 r に対して r 進正規数であることを意味する。一般論として「ほとんど全ての」実数が正規数であることが知られているが、その証明は構成的でないため、正規数であることが判明している具体的な数は非常に限られている。例えば、2の平方根、円周率、ネイピア数はそれぞれ正規数だと信じられているが、その通りか否かは未だ謎である。
  • In mathematics, a normal number is a real number whose infinite sequence of digits in every base b is distributed uniformly in the sense that each of the b digit values has the same natural density 1/b, also all possible b2 pairs of digits are equally likely with density b−2, all b3 triplets of digits equally likely with density b−3, etc.In lay terms, this means that no digit, or combination of digits, occurs more frequently than any other, and this is true whether the number is written in base 10, binary, or any other base. A normal number can be thought of as an infinite sequence of coin flips (binary) or rolls of a die (base 6). Even though there will be sequences such as 10, 100, or more consecutive tails (binary) or fives (base 6) or even 10, 100, or more repetitions of a sequence such as tail-head (two consecutive coin flips) or 6-1 (two consecutive rolls of a die), there will also be equally many of any other sequence of equal length. No digit or sequence is "favored".While a general proof can be given that almost all real numbers are normal (in the sense that the set of exceptions has Lebesgue measure zero), this proof is not constructive and only very few specific numbers have been shown to be normal. For example, it is widely believed that the numbers √2, π, and e are normal, but a proof remains elusive.
dbpedia-owl:wikiPageID
  • 166642 (xsd:integer)
dbpedia-owl:wikiPageLength
  • 14091 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 49 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 110353096 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • En mathématiques, un nombre normal est un nombre réel tel que la fréquence d'apparition de tout n-uplet dans la suite de ses « décimales » dans toute base est équirépartie.↑ Jean-Paul Delahaye, Le fascinant nombre π, Belin,‎ 1997 [détail des éditions].
  • En matemáticas, un número normal es un número real cuyas cifras en cualquier base están distribuidas siguiendo una distribución uniforme, siendo todas las cifras igualmente probables, así como todos los pares, tríos, etc. Las cifras de ese número son tanto los de su parte entera como la sucesión infinita de dígitos que hay detrás de la coma o parte fraccionaria.
  • Normális szám a k pozitív egész számhoz viszonyítva olyan valós szám, amelynek k-adostört (pl. tizedestört) alakjának számjegyei a végtelenségig véletlenszerűen váltakoznak. A racionális számok e laza megfogalmazás szerint nem tűnnek normálisnak, hiszen számjegyeik vagy végtelen sok nullával fejeződnek be, vagy egy megadott mintázat szerint ismétlődnek a végtelenségig.
  • 数学における正規数(せいきすう、normal number)とは、無限小数表示において数字が一様に分布しており、数字の列が現れる頻度に偏りがないという性質を持つ実数である。より正確な定義については「定義」の節を参照のこと。r 進法での表示についてこの性質を持つ数を r 進正規数という。単に正規数と述べた場合は、2 以上の任意の整数 r に対して r 進正規数であることを意味する。一般論として「ほとんど全ての」実数が正規数であることが知られているが、その証明は構成的でないため、正規数であることが判明している具体的な数は非常に限られている。例えば、2の平方根、円周率、ネイピア数はそれぞれ正規数だと信じられているが、その通りか否かは未だ謎である。
  • In mathematics, a normal number is a real number whose infinite sequence of digits in every base b is distributed uniformly in the sense that each of the b digit values has the same natural density 1/b, also all possible b2 pairs of digits are equally likely with density b−2, all b3 triplets of digits equally likely with density b−3, etc.In lay terms, this means that no digit, or combination of digits, occurs more frequently than any other, and this is true whether the number is written in base 10, binary, or any other base.
  • In de wiskunde is een normaal getal een reëel getal met oneindig veel decimalen waarvoor geldt dat elke cijferreeks bij benadering even vaak voorkomt als alle andere cijferreeksen van dezelfde lengte. Dit moet waar zijn voor elk talstelsel waarmee het getal kan worden uitgeschreven. Hoewel bewezen kan worden dat bijna alle getallen normaal zijn, is dat bewijs voor concrete gevallen meestal niet te geven.
  • En matemàtiques, s'anomena nombre normal a aquell nombre real tal que en les seves xifres qualsevol patró de nombres finit hi apareix amb la freqüència limitadora esperada per una distribució uniforme discreta, independentment de la base en la que es representi el nombre. Aquest fet permet demostrar trivialment que qualsevol cadena d'enters apareixerà tantes vegades com es vulgui dins la representació del nombre. Els nombres normals són un subconjunt dels nombres irracionals.
rdfs:label
  • Nombre normal
  • Nombre normal
  • Normaal getal
  • Normal number
  • Normale Zahl
  • Normális szám
  • Normální číslo
  • Numero normale
  • Número normal
  • Número normal
  • Нормальное число
  • 正規数
owl:sameAs
http://www.w3.org/ns/prov#wasDerivedFrom
foaf:isPrimaryTopicOf
is dbpedia-owl:wikiPageDisambiguates of
is dbpedia-owl:wikiPageWikiLink of
is foaf:primaryTopic of