En géométrie, la méthode des indivisibles ou principe de cavalieri est une méthode de calcul d'aire et de volume inventée par Bonaventura Cavalieri au XVIIe siècle, développée par Gilles Personne de Roberval, Evangelista Torricelli et Blaise Pascal, plus efficace que la méthode d'exhaustion d'Archimède mais aussi plus risquée à appliquer. On peut la considérer comme l'ancêtre du calcul intégral, développé quelque temps après par Leibniz et Isaac Newton.

PropertyValue
dbpedia-owl:abstract
  • En géométrie, la méthode des indivisibles ou principe de cavalieri est une méthode de calcul d'aire et de volume inventée par Bonaventura Cavalieri au XVIIe siècle, développée par Gilles Personne de Roberval, Evangelista Torricelli et Blaise Pascal, plus efficace que la méthode d'exhaustion d'Archimède mais aussi plus risquée à appliquer. On peut la considérer comme l'ancêtre du calcul intégral, développé quelque temps après par Leibniz et Isaac Newton.
  • 카발리에리의 원리(Cavalieri's principle)는 이탈리아의 수학자인 보나벤투라 카발리에리가 발견한 수학 원리로, 경계면으로 둘러싸인 두 입체 V,V'를 하나의 정해진 평면과 평행인 평면으로 자를 때, V,V'의 내부에 있는 잘린 부분의 면적의 비가 항상 m:n이면 입체 V,V'의 부피의 비도 m:n이 된다는 수학적 원리이다.다시 말해 '어떤 두 개의 평면도형을 정직선에 평행인 직선으로 나누었을 때, 도형 내에 있는 선분의 비가 항상 m:n 일 때는, 그 2개의 도형의 넓이 의 비도 m:n과 같다.'라는 것이다. 또한, 이 원리를 입체인 경우로 확장하면 '단면의 비가 일정하면, 전체의 비도 똑같다'라고 간단하게 말할 수도 있다. 여기서 전체란 무한한 개수의 단면을 합쳐놓은 것이므로 부피라고 추측하는 것은 합리적이며 당연한 것이다. 이 원리를 m=n인 특정한 상황에 적용시키면, '2개의 입체에서 한 평면에 평행한 평면으로 자른 단면의 넓이가 항상 같으면 2개의 입체의 부피는 같다'라고 할 수 있다. 이 원리를 기초로 하여 각종 입체의 부피를 광범위하게 구할 수 있게 되었으며, 부피를 잘게 쪼개어 적분하는 구분구적법의 시초가 되기도 하였다.한편 조충지가 카발리에리보다 이 원리를 먼저 발견하여, 조충지의 원리라고 부르기도 한다.
  • Das Prinzip von Cavalieri (auch bekannt als der Satz des Cavalieri oder Cavalierisches Prinzip) ist eine Aussage aus der Geometrie, die auf den italienischen Mathematiker Bonaventura Cavalieri zurückgeht.
  • In geometry, Cavalieri's principle, sometimes called the method of indivisibles, named after Bonaventura Cavalieri, is as follows: 2-dimensional case: Suppose two regions in a plane are included between two parallel lines in that plane. If every line parallel to these two lines intersects both regions in line segments of equal length, then the two regions have equal areas. 3-dimensional case: Suppose two regions in three-space (solids) are included between two parallel planes. If every plane parallel to these two planes intersects both regions in cross-sections of equal area, then the two regions have equal volumes.Today Cavalieri's principle is seen as an early step towards integral calculus, and while it is used in some forms, such as its generalization in Fubini's theorem, results using Cavalieri's principle can often be shown more directly via integration. In the other direction, Cavalieri's principle grew out of the ancient Greek method of exhaustion, which used limits but did not use infinitesimals.
  • カヴァリエリの原理(カヴァリエリのげんり、Cavalieri's principle)は、面積や体積に関する一般的な法則のひとつである。カヴァリエリの定理、不可分の方法 (method of indivisibles) ともいう。例えば体積についてのカヴァリエリの原理とは、大まかには「切り口の面積が常に等しい2つの立体の体積は等しい」という主張である。カヴァリエリは17世紀のイタリアの数学者。
  • Метод неделимых — возникшее в конце XVI века наименование совокупности приёмов для вычисления площадей фигур или объёмов геометрических тел. Идея метода для плоских фигур состояла в том, чтобы разделить эти фигуры на отрезки нулевой ширины («неделимые», обычно это параллельные отрезки), которые потом «собираются» без изменения их длины и образуют другую фигуру, площадь которой уже известна (см. ниже примеры). Вычисление объёма пространственных тел происходит аналогично, только они разделяются не на отрезки, а на «неделимые» плоские фигуры. Формализация этих приёмов во многом определила в дальнейшем зарождение и развитие интегрального исчисления.
  • El Principio de Cavalieri (denominado en honor a su descubridor Bonaventura Cavalieri en el siglo XVII) es una ley geométrica que enuncia la diferencia de volumen en dos cuerpos. El enunciado podría ser:Hoy en día en la moderna teoría de geometría analítica el principio de Cavalieri es tomado como un caso especial del Principio de Fubini. Cavalieri no hizo un uso extensivo del principio, empleándolo sólo en su Método de las indivisibles que expone en el año 1635 con la publicación de su obra Geometria indivisibilibus y también aparece en 1647 en su Exercitationes Geometricae. Antes del principio siglo XVII sólo se podría calcular el volumen de algunos cuerpos especiales ya tratados geométricamente por los resultados obtenidos por el griego Arquímedes y Kepler. La idea del cálculo de volúmenes mediante la comparación de secciones dio paso al desarrollo de los primeros pasos del cálculo infinitesimal así como de las integrales.
  • Zasada Cavalieriego – metoda obliczania objętości brył przestrzennych, odkryta przez Archimedesa i opisana ponownie przez XVII-wiecznego matematyka włoskiego, Bonaventurę Cavalieriego. Obecnie uogólniona na wielowymiarową miarę Lebesgue'a oraz abstrakcyjne przestrzenie z miarą produktową. Zasada Cavalieriego, w swoim oryginalnym sformułowaniu, mówi że: Jeśli dwie bryły mają tę własność, że ich przekroje wszystkimi płaszczyznami równoległymi do jednej, z góry ustalonej płaszczyzny, mają te same pola, to te bryły mają równe objętości.Twierdzenie to zwykle wystarcza do obliczania objętości znanych brył, jak np. stożek czy elipsoida, jednak może być w naturalny sposób uogólnione na język współczesnej matematyki.
  • Cavalieriho princip je poznatek stereometrie používaný při výpočtu objemu těles pojmenovaný po Bonaventurovi Cavalierim.
dbpedia-owl:thumbnail
dbpedia-owl:wikiPageID
  • 625076 (xsd:integer)
dbpedia-owl:wikiPageLength
  • 7865 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 37 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 109591927 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • En géométrie, la méthode des indivisibles ou principe de cavalieri est une méthode de calcul d'aire et de volume inventée par Bonaventura Cavalieri au XVIIe siècle, développée par Gilles Personne de Roberval, Evangelista Torricelli et Blaise Pascal, plus efficace que la méthode d'exhaustion d'Archimède mais aussi plus risquée à appliquer. On peut la considérer comme l'ancêtre du calcul intégral, développé quelque temps après par Leibniz et Isaac Newton.
  • Das Prinzip von Cavalieri (auch bekannt als der Satz des Cavalieri oder Cavalierisches Prinzip) ist eine Aussage aus der Geometrie, die auf den italienischen Mathematiker Bonaventura Cavalieri zurückgeht.
  • カヴァリエリの原理(カヴァリエリのげんり、Cavalieri's principle)は、面積や体積に関する一般的な法則のひとつである。カヴァリエリの定理、不可分の方法 (method of indivisibles) ともいう。例えば体積についてのカヴァリエリの原理とは、大まかには「切り口の面積が常に等しい2つの立体の体積は等しい」という主張である。カヴァリエリは17世紀のイタリアの数学者。
  • Cavalieriho princip je poznatek stereometrie používaný při výpočtu objemu těles pojmenovaný po Bonaventurovi Cavalierim.
  • Zasada Cavalieriego – metoda obliczania objętości brył przestrzennych, odkryta przez Archimedesa i opisana ponownie przez XVII-wiecznego matematyka włoskiego, Bonaventurę Cavalieriego. Obecnie uogólniona na wielowymiarową miarę Lebesgue'a oraz abstrakcyjne przestrzenie z miarą produktową.
  • Метод неделимых — возникшее в конце XVI века наименование совокупности приёмов для вычисления площадей фигур или объёмов геометрических тел. Идея метода для плоских фигур состояла в том, чтобы разделить эти фигуры на отрезки нулевой ширины («неделимые», обычно это параллельные отрезки), которые потом «собираются» без изменения их длины и образуют другую фигуру, площадь которой уже известна (см. ниже примеры).
  • 카발리에리의 원리(Cavalieri's principle)는 이탈리아의 수학자인 보나벤투라 카발리에리가 발견한 수학 원리로, 경계면으로 둘러싸인 두 입체 V,V'를 하나의 정해진 평면과 평행인 평면으로 자를 때, V,V'의 내부에 있는 잘린 부분의 면적의 비가 항상 m:n이면 입체 V,V'의 부피의 비도 m:n이 된다는 수학적 원리이다.다시 말해 '어떤 두 개의 평면도형을 정직선에 평행인 직선으로 나누었을 때, 도형 내에 있는 선분의 비가 항상 m:n 일 때는, 그 2개의 도형의 넓이 의 비도 m:n과 같다.'라는 것이다. 또한, 이 원리를 입체인 경우로 확장하면 '단면의 비가 일정하면, 전체의 비도 똑같다'라고 간단하게 말할 수도 있다. 여기서 전체란 무한한 개수의 단면을 합쳐놓은 것이므로 부피라고 추측하는 것은 합리적이며 당연한 것이다.
  • In geometry, Cavalieri's principle, sometimes called the method of indivisibles, named after Bonaventura Cavalieri, is as follows: 2-dimensional case: Suppose two regions in a plane are included between two parallel lines in that plane. If every line parallel to these two lines intersects both regions in line segments of equal length, then the two regions have equal areas. 3-dimensional case: Suppose two regions in three-space (solids) are included between two parallel planes.
  • El Principio de Cavalieri (denominado en honor a su descubridor Bonaventura Cavalieri en el siglo XVII) es una ley geométrica que enuncia la diferencia de volumen en dos cuerpos. El enunciado podría ser:Hoy en día en la moderna teoría de geometría analítica el principio de Cavalieri es tomado como un caso especial del Principio de Fubini.
rdfs:label
  • Méthode des indivisibles
  • Cavalieri's principle
  • Cavalieriův princip
  • Metodo degli indivisibili
  • Principio de Cavalieri
  • Prinzip von Cavalieri
  • Zasada Cavalieriego
  • Метод неделимых
  • カヴァリエリの原理
  • 카발리에리의 원리
owl:sameAs
http://www.w3.org/ns/prov#wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbpedia-owl:knownFor of
is dbpedia-owl:wikiPageRedirects of
is dbpedia-owl:wikiPageWikiLink of
is prop-fr:renomméPour of
is foaf:primaryTopic of