La mécanique quantique est la branche de la physique qui a pour objet d'étudier et de décrire les phénomènes fondamentaux à l'œuvre dans les systèmes physiques, plus particulièrement à l'échelle atomique et subatomique.Elle fut développée au début du XXe siècle par une dizaine de physiciens américains et européens, afin de résoudre différents problèmes que la physique classique échouait à expliquer, comme le rayonnement du corps noir, l'effet photo-électrique, ou l'existence des raies spectrales.Au cours de ce développement, la mécanique quantique se révéla être très féconde en résultats et en applications diverses.

PropertyValue
dbpedia-owl:abstract
  • La mécanique quantique est la branche de la physique qui a pour objet d'étudier et de décrire les phénomènes fondamentaux à l'œuvre dans les systèmes physiques, plus particulièrement à l'échelle atomique et subatomique.Elle fut développée au début du XXe siècle par une dizaine de physiciens américains et européens, afin de résoudre différents problèmes que la physique classique échouait à expliquer, comme le rayonnement du corps noir, l'effet photo-électrique, ou l'existence des raies spectrales.Au cours de ce développement, la mécanique quantique se révéla être très féconde en résultats et en applications diverses. Elle permit notamment d'élucider le mystère de la structure de l'atome, et plus globalement elle s'avéra être le cadre général de description du comportement des particules élémentaires, jusqu'à constituer le socle de la physique moderne.L'expression physique quantique désigne quant à elle un corpus théorique un peu plus étendu, qui s'appuie sur la mécanique quantique pour décrire des phénomènes particuliers, notamment les interactions fondamentales.La mécanique quantique comporte de profondes difficultés conceptuelles, et son interprétation physique ne fait pas l'unanimité dans la communauté scientifique. Parmi ces concepts, on peut citer la dualité onde corpuscule, la superposition quantique, l'intrication quantique ou encore la non-localité.
  • La meccanica quantistica (anche detta fisica quantistica) è una teoria della fisica moderna che descrive il comportamento della materia, della radiazione e le reciproche interazioni, con particolare riguardo ai fenomeni tipici delle scale di lunghezze o di energie atomiche e subatomiche.L'inconsistenza e l'impossibilità della meccanica classica di rappresentare la realtà sperimentale, in particolare della luce e dell'elettrone, furono le motivazioni principali che portarono allo sviluppo della meccanica quantistica nella prima metà del XX secolo. Il nome "teoria dei quanti", introdotto da Max Planck agli inizi del Novecento, si basa sul fatto che alcune quantità o grandezze di certi sistemi fisici a livello microscopico, come l'energia o il momento angolare, possono variare soltanto di valori discreti e non continui, detti anche "quanti".Come caratteristica fondamentale, la meccanica quantistica descrive la radiazione e la materia sia come un fenomeno ondulatorio che allo stesso tempo come entità particellari, al contrario della meccanica classica dove per esempio la luce è descritta solo come un'onda o l'elettrone solo come una particella. Questa inaspettata e contro intuitiva proprietà, chiamata dualismo onda-particella, è la principale ragione del fallimento di tutte le teorie classiche sviluppate fino al XIX secolo. La relazione fra la natura ondulatoria e quella corpuscolare delle particelle è formulata nel principio di indeterminazione di Heisenberg e dichiarata all'interno del principio di complementarità.
  • Fisikan, mekanika kuantikoa (mekanika ondulatorio bezala ere ezaguna), materiaren portaera azaltzen duen fisikaren adar nagusietako bat da. Bere aplikazio eremuak, unibertsala izan nahi du, baina oso txikiaren munduan lortzen du bere iragarpenak, fisika klasikoak dioenaren erabat ezberdinak izatea.Mekanika kuantikoa, fisikaren adar nagusietako azkena da. XX. mende hasieran hasten da, unibertsoa azaltzen saiatzen ziren bi teoria, grabitazio unibertsalaren legea eta teoria elektromagnetiko klasikoa, zenbait fenomeno azaltzeko nahiko izan ez zirenean. Teoria elektromagnetikoak, arazo bat sortzen zuen orekan zegoen edozein objekturen erradiazio igorpena azaltzen saiatzen zenean, erradiazio termiko deituriko erradiazioa, osatzen duten partikulen kitzikapen mikroskopitik datorrena dena. Orain bai, elektrodinamika klasikoaren ekuazioak erabiliz, erradiazio termiko honek igortzen zuen energiak, infinito ematen zuen, objektuak igortzen zituen maiztasun guztiak batuz gero, fisikarientzako batere logikoa ez zen emaitza.Mekanika estadistikoaren barnean sortu ziren ideia kuantikoak 1900ean. Louis de Brogliek, partikula material bakoitzak, uhin luzera bat duela proposatu zuen, bere masarekiko alderantzizko proportzioan lotua (momentum deitu zuen), eta bere abiaduragatik emana. Max Planck fisikariari, trikimailu matematiko bat bururatu zitzaion: prozesu aritmetikoan, maiztasun horien integrala, batuketa ez jarrai bategatik aldatzen bazen, emaitza bezala, jada ez zen infinitoa lortzen, eta, beraz, arazoa ezabatzen zen, eta, gainera, lortutako emaitza, ondoren neurtua zenarekin bat zetorren. Max Planck izan zen, orduan, erradiazio elektromagnetikoa, materiak, argi kuanto edo energia fotoi eran konstante estatistiko baten bidez xurgatu eta igortzen zuela zioen hipotesia adierazi zuena, konstante hori, Plancken konstantea deitua izan zelarik. Bere historia, XX. mendearekin lotua dago, fenomeno baten lehen formulazio kuantikoa, 1900eko abenduak 14an, Berlingo Zientzia Akademiako Elkarte Fisikoaren sekzio batean ezagutzera eman baitzuen Max Planckek.Plancken teoria, hipotesi soilean geratuko zen urte askoz, Alber Einsteinek berriz hartu ez balu, argia, baldintza batzuetan, energia partikula independente bezala aritzen dela proposatuz (argi kuantoak edo fotoiak). Albert Einstein izan zen, 1905ean, zegozkion mugimendu legeak osatu zituena bere erlatibitate bereziaren teoriarekin, elektromagnetismoa, funtsean teoria ez mekanikoa zela frogatuz. Honela amaitzen zuen, fisika klasikoa deitua izan dena, hau da, fisika ez kuantikoa. Berak, heuristiko deitu zuen ikuspuntu hau, bere efektu fotoelektrikoaren teoria garatzeko. Hipotesi hau 1905ean argitaratu zuen, eta, honekin, 1921ean, fisikako nobel saria lortu zuen. Hipotesi hau, bero zehatzari buruzko teoria bat proposatzeko ere aplikatu zen, hau da, gorputz baten masa unitatearen tenperatura unitate batean gehitzeko behar den bero kopurua zein den ebazten duena.Partikula osatzaileen abiadurak, ez du oso altua, edo argiaren abiaduratik gertukoa izan behar.Mekanika kuantikoak, une horretarainoko fisikaren edozein paradigma hausten du. Berarekin, mundu atomikoak, espero genukeen bezala ez duela jokatzen ikusten da. Ziurgabetasun, zehatzgabetasun eta kuantizazio kontzeptuak, lehen aldiz, hemen sartuak dira. Gainera, mekanika kuantikoa egundaino egin diren iragarpen esperimentalik zehatzenak eman dituen teoria zientifikoa da, balizkotasunaren mende dagoen arren.
  • La mecánica cuántica (también conocida como la física cuántica o la teoría cuántica) es una rama de la física que se ocupa de los fenómenos físicos a escalas microscópicas, donde la acción es del orden de la constante de Planck. Su aplicación ha hecho posible el descubrimiento y desarrollo de muchas tecnologías, como por ejemplo los transistores, componentes ampliamente utilizados en casi todos los aparatos que tengan alguna parte funcional electrónica. La mecánica cuántica describe, en su visión más ortodoxa, cómo en cualquier sistema físico –y por tanto, en todo el universo– existe una diversa multiplicidad de estados, los cuales habiendo sido descritos mediante ecuaciones matemáticas por los físicos, son denominados estados cuánticos. De esta forma la mecánica cuántica puede explicar la existencia del átomo y revelar los misterios de la estructura atómica, tal como hoy son entendidos; fenómenos que no puede explicar debidamente la física clásica o más propiamente la mecánica clásica.De forma específica, se considera también mecánica cuántica, a la parte de ella misma que no incorpora la relatividad en su formalismo, tan sólo como añadido mediante la teoría de perturbaciones. La parte de la mecánica cuántica que sí incorpora elementos relativistas de manera formal y con diversos problemas, es la mecánica cuántica relativista o ya, de forma más exacta y potente, la teoría cuántica de campos (que incluye a su vez a la electrodinámica cuántica, cromodinámica cuántica y teoría electrodébil dentro del modelo estándar) y más generalmente, la teoría cuántica de campos en espacio-tiempo curvo. La única interacción que no se ha podido cuantificar ha sido la interacción gravitatoria.La mecánica cuántica es el fundamento de los estudios del átomo, su núcleo y las partículas elementales (siendo necesario el enfoque relativista). También en teoría de la información, criptografía y química. Las técnicas derivadas de la aplicación de la mecánica cuántica suponen, en mayor o menor medida, el 30 por ciento del PIB de los Estados Unidos.
  • Mekanika kuantum adalah cabang dasar fisika yang menggantikan mekanika klasik pada tataran atom dan subatom. Ilmu ini memberikan kerangka matematika untuk berbagai cabang fisika dan kimia, termasuk fisika atom, fisika molekular, kimia komputasi, kimia kuantum, fisika partikel, dan fisika nuklir. Mekanika kuantum adalah bagian dari teori medan kuantum dan fisika kuantum umumnya, yang, bersama relativitas umum, merupakan salah satu pilar fisika modern. Dasar dari mekanika kuantum adalah bahwa energi itu tidak kontinyu, tapi diskrit -- berupa 'paket' atau 'kuanta'. Konsep ini cukup revolusioner, karena bertentangan dengan fisika klasik yang berasumsi bahwa energi itu berkesinambungan.
  • A kvantummechanika a természet, a fizikai rendszerek jelenleg érvényesnek gondolt elmélete, amelyik túllépett a klasszikus fizika fogalmain. Jóslatai a klasszikus fizikáétól főleg kis méretek, energiák és hőmérsékletek esetén különböznek.Így a kvantummechanika főleg az elemi részecskék fizikájának elmélete vagy például az olyan alacsony hőmérsékletű makrojelenségeké, mint a szuperfolyékonyság és a szupravezetés. A kvantummechanika néhány alapelvből származtatott matematikai apparátusa kísérletileg ellenőrizhető jóslatokat szolgáltat olyan jelenségekre, amikre a klasszikus mechanika és a klasszikus elektrodinamika nem képes. Ilyenek a kvantálás, a hullám-részecske kettősség, a határozatlansági elv és a kvantum-összefonódás. A kvantumfizika és kvantumelmélet kifejezéseket gyakran a kvantummechanika szinonimájaként használjuk, máskor viszont bővebben beleértjük a kvantummechanika előtti régebbi kvantumelméleteket is (ld. a történeti összefoglalót), vagy amikor a kvantummechanikát egy sokkal szűkebb értelemben használjuk (a klasszikus mechanika mintájára), akkor beleértjük az olyan elméleteket például mint a kvantumtérelmélet vagy annak első kidolgozott változata a kvantum-elektrodinamika. Ebben a szócikkben mi a szó legáltalánosabb értelmében használjuk.
  • La mecànica quàntica, coneguda també com a física quàntica o com a teoria quàntica, és la branca de la física que estudia el comportament de la llum i de la matèria a escales microscòpiques, on l'acció és de l'ordre de la constant de Planck. Es diferencia de la mecànica clàssica generalment a escala atòmica (molècules i àtoms) i subatòmica (protons, electrons, neutrons o fins i tot partícules més petites). Els seus principis bàsics s'apliquen a molts dels camps de la física i la química actuals, com per exemple, la física de partícules, la física nuclear, la física de la matèria condensada, la física atòmica i molecular, la computació quàntica, l'òptica quàntica, la química quàntica i la química computacional. Juntament amb la relativitat general, la mecànica quàntica és un dels pilars de la física moderna. A escala macroscòpica, les lleis de la mecànica clàssica s'aproximen a les de la mecànica quàntica. Va sorgir a principis del segle XX per tal d'explicar diversos resultats experimentals de fenòmens d'origen microscòpic que no es podien entendre amb la física clàssica.Les descripcions que permet la mecànica quàntica inclouen el comportament simultani semblant a una ona i semblant a una partícula de la matèria i la radiació (dualitat ona-partícula), i el principi d'incertesa de Heisenberg segons el qual no es pot saber, alhora i amb total precisió, el valor de certs objectes observables, com per exemple la posició i el moment d'una partícula.Tanmateix, alguns sistemes sí que presenten alguns d'aquests comportaments a escala macroscòpica; en són exemples coneguts la superfluïdesa (el flux sense fricció dels líquids a temperatures pròximes al zero absolut) i la superconductivitat. La teoria quàntica també proporciona descripcions precises de molts fenòmens, abans inexplicats, com ara la radiació de cossos negres i l'estabilitat dels orbitals electrònics. També ha ofert informació sobre el funcionament de molts sistemes biològics diferents, incloent-hi els receptors olfactius i les estructures proteiques.Tanmateix, la física clàssica sovint pot ser una bona aproximació als resultats obtinguts altrament per la física quàntica, típicament en circumstàncies amb nombres grans de partícules o nombres quàntics elevats (tanmateix, encara queden algunes preguntes sense respondre dins el camp del caos quàntic).
  • Quantum mechanics (QM – also known as quantum physics, or quantum theory) is a branch of physics which deals with physical phenomena at nanoscopic scales where the action is on the order of the Planck constant. It departs from classical mechanics primarily at the quantum realm of atomic and subatomic length scales. Quantum mechanics provides a mathematical description of much of the dual particle-like and wave-like behavior and interactions of energy and matter. Quantum mechanics provides a substantially useful framework for many features of the modern periodic table of elements including the behavior of atoms during chemical bonding and has played a significant role in the development of many modern technologies.In advanced topics of quantum mechanics, some of these behaviors are macroscopic (see macroscopic quantum phenomena) and emerge at only extreme (i.e., very low or very high) energies or temperatures (such as in the use of superconducting magnets). For example, the angular momentum of an electron bound to an atom or molecule is quantized. In contrast, the angular momentum of an unbound electron is not quantized. In the context of quantum mechanics, the wave–particle duality of energy and matter and the uncertainty principle provide a unified view of the behavior of photons, electrons, and other atomic-scale objects.The mathematical formulations of quantum mechanics are abstract. A mathematical function, the wavefunction, provides information about the probability amplitude of position, momentum, and other physical properties of a particle. Mathematical manipulations of the wavefunction usually involve bra–ket notation which requires an understanding of complex numbers and linear functionals. The wavefunction formulation treats the particle as a quantum harmonic oscillator, and the mathematics is akin to that describing acoustic resonance. Many of the results of quantum mechanics are not easily visualized in terms of classical mechanics. For instance, in a quantum mechanical model the lowest energy state of a system, the ground state, is non-zero as opposed to a more "traditional" ground state with zero kinetic energy (all particles at rest). Instead of a traditional static, unchanging zero energy state, quantum mechanics allows for far more dynamic, chaotic possibilities, according to John Wheeler.The earliest versions of quantum mechanics were formulated in the first decade of the 20th century. About this time, the atomic theory and the corpuscular theory of light (as updated by Einstein) first came to be widely accepted as scientific fact; these latter theories can be viewed as quantum theories of matter and electromagnetic radiation, respectively. Early quantum theory was significantly reformulated in the mid-1920s by Werner Heisenberg, Max Born and Pascual Jordan, (matrix mechanics); Louis de Broglie and Erwin Schrödinger (wave mechanics); and Wolfgang Pauli and Satyendra Nath Bose (statistics of subatomic particles). Moreover, the Copenhagen interpretation of Niels Bohr became widely accepted. By 1930, quantum mechanics had been further unified and formalized by the work of David Hilbert, Paul Dirac and John von Neumann with a greater emphasis placed on measurement in quantum mechanics, the statistical nature of our knowledge of reality, and philosophical speculation about the role of the observer. Quantum mechanics has since permeated throughout many aspects of 20th-century physics and other disciplines including quantum chemistry, quantum electronics, quantum optics, and quantum information science. Much 19th-century physics has been re-evaluated as the "classical limit" of quantum mechanics and its more advanced developments in terms of quantum field theory, string theory, and speculative quantum gravity theories.The name quantum mechanics derives from the observation that some physical quantities can change only in discrete amounts (Latin quanta), and not in a continuous (cf. analog) way.
  • Die Quantenmechanik ist eine physikalische Theorie zur Beschreibung der Materie, ihrer Eigenschaften und Gesetzmäßigkeiten. Sie erlaubt im Gegensatz zu den Theorien der klassischen Physik eine Berechnung der physikalischen Eigenschaften von Materie auch im Größenbereich der Atome und darunter. Die Quantenmechanik ist eine der Hauptsäulen der modernen Physik. Sie bildet die Grundlage zur Beschreibung der Phänomene der Atomphysik, der Festkörperphysik und der Kern- und Elementarteilchenphysik, aber auch verwandter Wissenschaften wie der Quantenchemie.Die Grundlagen der Quantenmechanik wurden zwischen 1925 und 1935 von Werner Heisenberg, Erwin Schrödinger, Max Born, Pascual Jordan, Wolfgang Pauli, Niels Bohr, Paul Dirac, John von Neumann, Friedrich Hund und weiteren Physikern erarbeitet, nachdem erst die klassische Physik und dann die älteren Quantentheorien bei der systematischen Beschreibung der Vorgänge in den Atomen versagt hatten. Die Quantenmechanik erhielt ihren Namen in Abgrenzung zur klassischen Mechanik, weil sie einige ihrer zentralen Begriffe, unter anderem "Ort" und "Bahn" eines Teilchens, durch grundlegend andere Konzepte ersetzte.Die Quantenmechanik bezieht sich auf materielle Objekte und modelliert diese als einzelne Teilchen oder als Systeme, die aus einer bestimmten Anzahl von einzelnen Teilchen bestehen. Mit diesen Modellen können Elementarteilchen, Atome, Moleküle oder die makroskopische Materie detailliert beschrieben werden. Zur Berechnung von deren möglichen Zuständen mit ihren jeweiligen physikalischen Eigenschaften und Reaktionsweisen wird ein der Quantenmechanik eigener mathematischer Formalismus genutzt.Die Quantenmechanik unterscheidet sich nicht nur in ihrer mathematischen Struktur grundlegend von der klassischen Physik. Sie verwendet Begriffe und Konzepte, die sich der Anschaulichkeit entziehen und auch einigen Prinzipien widersprechen, die in der klassischen Physik als fundamental und selbstverständlich angesehen werden. Durch Anwendung von Korrespondenzregeln und Konzepten der Dekohärenztheorie können viele Gesetzmäßigkeiten der klassischen Physik, insbesondere die ganze klassische Mechanik, als Grenzfälle der Quantenmechanik beschrieben werden. Allerdings gibt es auch zahlreiche Quanteneffekte ohne klassischen Grenzfall. Zur Deutung der Theorie wurde eine Reihe verschiedener Interpretationen der Quantenmechanik entwickelt, die sich insbesondere in ihrer Konzeption des Messprozesses und in ihren metaphysischen Prämissen unterscheiden.Auf der Quantenmechanik und ihren Begriffen bauen die weiterführenden Quantenfeldtheorien auf, angefangen mit der Quantenelektrodynamik ab ca. 1930, mit denen auch die Prozesse der Erzeugung und Vernichtung von Teilchen analysiert werden können.Genauere Informationen zum mathematischen Formalismus finden sich im Artikel Mathematische Struktur der Quantenmechanik.
  • Kvantová mechanika je vedle kvantové teorie pole součástí kvantové teorie, což je základní fyzikální teorie, která zobecnila a rozšířila klasickou mechaniku, zejména na atomové a subatomové úrovni. Od klasické mechaniky se odlišuje především popisem stavu fyzikálních objektů. Stav mikročástice v kvantové mechanice není popsán jejich polohou a hybností, jak je tomu v klasické mechanice, ale vlnovou funkcí, obdobně jako je postupná elektromagnetická vlna popsána harmonickou funkcí. Při přesně definovaných vnějších podmínkách pak lze pomocí kvantové mechaniky vypočítat pomocí Schrödingerovy rovnice vlnovou funkci v libovolném časovém okamžiku.Vlnová rovnice popisuje de Broglieovu vlnu částice a čtverec absolutní hodnoty vlnové funkce udává hustotu pravděpodobnosti výskytu mikročástice. Jednodušeji lze toto říci, že se daná částice nachází v čase t na místě udaném souřadnicemi x, y, z s určitou pravděpodobností.Hlavním rysem kvantové mechaniky je pravděpodobnostní popis. Dalším typickým rysem je tzv. kvantování, diskrétnost a nespojitost některých veličin, které v klasické mechanice bývají spojité. Rysem kvantové mechaniky je taktéž výskyt veličin a jevů, které nemají na úrovni klasické mechaniky přímou analogii: např. spin částic, provázanost (zapletení) stavů, relace neurčitosti, atp. Klasická mechanika se dá získat z kvantové limitním přechodem, kdy lze považovat za dostatečně malé elementární kvantum akce, tzv. Planckovu konstantu. To je podobné např. limitnímu přechodu od relativistické mechaniky ke klasické, který odpovídá limitě pro rychlosti malé vzhledem k rychlosti světla. Naproti tomu je zapotřebí zdůraznit, že kvantový popis není nikterak omezen jen na oblast mikroskopických systémů. Existuje i řada makroskopických systémů, kde se projevují kvantové rysy - např. makroskopická supravodivost, supratekutost, atp. Kvantově-mechanický popis lze uplatnit dokonce i pro jevy v astronomickém měřítku. Kvantová mechanika se obvykle zabývá soustavami obsahujícími konečný počet bodových částic s nenulovou klidovou hmotností. Společně s teorií relativity je považována za pilíř moderní fyziky, přestože spolu v některých situacích netvoří konzistentní celek. Zatímco teorie relativity, ať již speciální, či obecná, nachází uplatnění zejména pro velké rychlosti, rozměry a hmotnosti, kvantová mechanika se nejčastěji projeví u malých (subatomárních) rozměrů, což jsou například elektrony, neutrony, atomy, molekuly, fotony atd. Speciální teorie relativity má ovšem zásadní význam i pro kvantovou mechaniku - např. v Diracově modelu atomu vodíku a standardním modelu fyziky elementárních částic. Na rozdíl od kvantové teorie pole zůstává v rámci kvantové mechaniky typ a počet částic fixován. Kvantová mechanika tvoří výchozí teoretický rámec v mnoha dalších oblastech fyziky a chemie, např. v teorii pevných látek či v kvantové chemii.
dbpedia-owl:wikiPageExternalLink
dbpedia-owl:wikiPageID
  • 1913 (xsd:integer)
dbpedia-owl:wikiPageLength
  • 93948 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 258 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 111078774 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
prop-fr:titre
  • Diagramme des principales interprétations
prop-fr:wikiPageUsesTemplate
prop-fr:wikiversity
  • Département:Mécanique quantique
  • Introduction à la mécanique quantique
prop-fr:wikiversityTitre
  • Département:Mécanique quantique
  • Introduction à la mécanique quantique
dcterms:subject
rdfs:comment
  • La mécanique quantique est la branche de la physique qui a pour objet d'étudier et de décrire les phénomènes fondamentaux à l'œuvre dans les systèmes physiques, plus particulièrement à l'échelle atomique et subatomique.Elle fut développée au début du XXe siècle par une dizaine de physiciens américains et européens, afin de résoudre différents problèmes que la physique classique échouait à expliquer, comme le rayonnement du corps noir, l'effet photo-électrique, ou l'existence des raies spectrales.Au cours de ce développement, la mécanique quantique se révéla être très féconde en résultats et en applications diverses.
  • Kvantová mechanika je vedle kvantové teorie pole součástí kvantové teorie, což je základní fyzikální teorie, která zobecnila a rozšířila klasickou mechaniku, zejména na atomové a subatomové úrovni. Od klasické mechaniky se odlišuje především popisem stavu fyzikálních objektů. Stav mikročástice v kvantové mechanice není popsán jejich polohou a hybností, jak je tomu v klasické mechanice, ale vlnovou funkcí, obdobně jako je postupná elektromagnetická vlna popsána harmonickou funkcí.
  • La mecànica quàntica, coneguda també com a física quàntica o com a teoria quàntica, és la branca de la física que estudia el comportament de la llum i de la matèria a escales microscòpiques, on l'acció és de l'ordre de la constant de Planck. Es diferencia de la mecànica clàssica generalment a escala atòmica (molècules i àtoms) i subatòmica (protons, electrons, neutrons o fins i tot partícules més petites).
  • Mekanika kuantum adalah cabang dasar fisika yang menggantikan mekanika klasik pada tataran atom dan subatom. Ilmu ini memberikan kerangka matematika untuk berbagai cabang fisika dan kimia, termasuk fisika atom, fisika molekular, kimia komputasi, kimia kuantum, fisika partikel, dan fisika nuklir. Mekanika kuantum adalah bagian dari teori medan kuantum dan fisika kuantum umumnya, yang, bersama relativitas umum, merupakan salah satu pilar fisika modern.
  • Quantum mechanics (QM – also known as quantum physics, or quantum theory) is a branch of physics which deals with physical phenomena at nanoscopic scales where the action is on the order of the Planck constant. It departs from classical mechanics primarily at the quantum realm of atomic and subatomic length scales. Quantum mechanics provides a mathematical description of much of the dual particle-like and wave-like behavior and interactions of energy and matter.
  • La meccanica quantistica (anche detta fisica quantistica) è una teoria della fisica moderna che descrive il comportamento della materia, della radiazione e le reciproche interazioni, con particolare riguardo ai fenomeni tipici delle scale di lunghezze o di energie atomiche e subatomiche.L'inconsistenza e l'impossibilità della meccanica classica di rappresentare la realtà sperimentale, in particolare della luce e dell'elettrone, furono le motivazioni principali che portarono allo sviluppo della meccanica quantistica nella prima metà del XX secolo.
  • La mecánica cuántica (también conocida como la física cuántica o la teoría cuántica) es una rama de la física que se ocupa de los fenómenos físicos a escalas microscópicas, donde la acción es del orden de la constante de Planck. Su aplicación ha hecho posible el descubrimiento y desarrollo de muchas tecnologías, como por ejemplo los transistores, componentes ampliamente utilizados en casi todos los aparatos que tengan alguna parte funcional electrónica.
  • Fisikan, mekanika kuantikoa (mekanika ondulatorio bezala ere ezaguna), materiaren portaera azaltzen duen fisikaren adar nagusietako bat da. Bere aplikazio eremuak, unibertsala izan nahi du, baina oso txikiaren munduan lortzen du bere iragarpenak, fisika klasikoak dioenaren erabat ezberdinak izatea.Mekanika kuantikoa, fisikaren adar nagusietako azkena da. XX.
  • A kvantummechanika a természet, a fizikai rendszerek jelenleg érvényesnek gondolt elmélete, amelyik túllépett a klasszikus fizika fogalmain. Jóslatai a klasszikus fizikáétól főleg kis méretek, energiák és hőmérsékletek esetén különböznek.Így a kvantummechanika főleg az elemi részecskék fizikájának elmélete vagy például az olyan alacsony hőmérsékletű makrojelenségeké, mint a szuperfolyékonyság és a szupravezetés.
  • Die Quantenmechanik ist eine physikalische Theorie zur Beschreibung der Materie, ihrer Eigenschaften und Gesetzmäßigkeiten. Sie erlaubt im Gegensatz zu den Theorien der klassischen Physik eine Berechnung der physikalischen Eigenschaften von Materie auch im Größenbereich der Atome und darunter. Die Quantenmechanik ist eine der Hauptsäulen der modernen Physik.
rdfs:label
  • Mécanique quantique
  • Kuantum mekaniği
  • Kvantová mechanika
  • Kvantummechanika
  • Kwantummechanica
  • Meccanica quantistica
  • Mechanika kwantowa
  • Mecànica quàntica
  • Mecánica cuántica
  • Mecânica quântica
  • Mekanika kuantiko
  • Mekanika kuantum
  • Quantenmechanik
  • Quantum mechanics
  • Квантова механика
  • Квантовая механика
  • 量子力学
  • 양자역학
owl:sameAs
http://www.w3.org/ns/prov#wasDerivedFrom
foaf:isPrimaryTopicOf
is dbpedia-owl:domain of
is dbpedia-owl:knownFor of
is dbpedia-owl:wikiPageDisambiguates of
is dbpedia-owl:wikiPageRedirects of
is dbpedia-owl:wikiPageWikiLink of
is prop-fr:champs of
is prop-fr:renomméPour of
is foaf:primaryTopic of