En mathématiques, et plus précisément en théorie des anneaux, un idéal fractionnaire est une généralisation de la définition d'un idéal. Ce concept doit son origine à la théorie algébrique des nombres. Pour résoudre certaines équations diophantiennes, cette théorie utilise des anneaux d'entiers généralisant celui des entiers relatifs.

PropertyValue
dbpedia-owl:abstract
  • En mathématiques, et plus précisément en théorie des anneaux, un idéal fractionnaire est une généralisation de la définition d'un idéal. Ce concept doit son origine à la théorie algébrique des nombres. Pour résoudre certaines équations diophantiennes, cette théorie utilise des anneaux d'entiers généralisant celui des entiers relatifs. Ces anneaux (unitaires) ne disposent en général pas d'équivalent du théorème fondamental de l'arithmétique et il n'est pas possible de factoriser un entier en un unique produit de facteurs premiers au groupe des éléments inversibles près. Les idéaux fournissent un équivalent de ce théorème, permettant de résoudre certaines équations diophantiennes ou d'établir des lois de réciprocités équivalentes à la loi de réciprocité quadratique établie par Gauss.Les idéaux disposent d'une multiplication, cette opération est associative et il existe un élément neutre constitué de l'anneau tout entier. En revanche, le manque d'inverse empêche de munir l'ensemble des idéaux d'une structure de groupe. Dans le cas des anneaux d'entiers, la structure possède toutes les bonnes propriétés pour offrir un contournement. Cette configuration est axiomatisée dans la définition d'un anneau de Dedekind. Dans un premier temps l'anneau est plongé dans son corps des fractions, puis la notion d'idéal est généralisée. Un idéal fractionnaire est l'analogue d'un idéal dans le corps des fractions.Cette notion est aussi utilisée en géométrie algébrique.
  • Lomený ideál je matematický koncept z oboru komutativní algebry, kde se vyskytuje v kontextu oborů integrity, a to zejména Dedekindových oborů. Do určité míry si lze lomené ideály představovat zkrátka jako ideály, v kterých jsou povoleny jmenovatele.
  • In mathematics, in particular commutative algebra, the concept of fractional ideal is introduced in the context of integral domains and is particularly fruitful in the study of Dedekind domains. In some sense, fractional ideals of an integral domain are like ideals where denominators are allowed. In contexts where fractional ideals and ordinary ring ideals are both under discussion, the latter are sometimes termed integral ideals for clarity.
  • В коммутативной алгебре, дробный идеал — это обобщение понятия идеала целостного кольца, особенно полезное при изучении дедекиндовых колец. Условно говоря, дробные идеалы — это идеалы со знаменателями. В случаях, когда одновременно обсуждаются дробные и обычные идеалы, последние называют целыми идеалами.
  • Der Begriff gebrochenes Ideal ist eine Verallgemeinerung des Idealbegriffes aus dem mathematischen Teilgebiet der Algebra, die insbesondere in der algebraischen Zahlentheorie eine wichtige Rolle spielt. In gewisser Weise ist der Übergang von gewöhnlichen zu gebrochenen Idealen analog zum Verhältnis zwischen ganzen und rationalen Zahlen.Dieser Artikel beschäftigt sich mit kommutativer Algebra. Insbesondere sind alle betrachteten Ringe kommutativ und haben ein Einselement. Für weitere Details siehe Kommutative Algebra.
  • In matematica, gli ideali frazionari sono generalizzazioni degli ideali di un anello usati nello studio dei domini d'integrità; possono essere pensati come ideali a cui è permesso avere un denominatore comune. In questo contesto, gli ideali propri dell'anello sono a volte detti ideali interi.
dbpedia-owl:thumbnail
dbpedia-owl:wikiPageExternalLink
dbpedia-owl:wikiPageID
  • 2798842 (xsd:integer)
dbpedia-owl:wikiPageLength
  • 20091 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 71 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 101757634 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
prop-fr:année
  • 2004 (xsd:integer)
prop-fr:id
  • Bourbaki AC
prop-fr:lienAuteur
  • Nicolas Bourbaki
  • Bas Edixhoven
prop-fr:nom
  • Bourbaki
  • Edixhoven
  • Moret-Bailly
  • Szpirglas
prop-fr:prénom
  • Laurent
  • Bas
  • Aviva
prop-fr:référence
  • Référence:Algèbre L3
prop-fr:sousTitre
  • Algèbre commutative
prop-fr:titre
prop-fr:url
  • http://perso.univ-rennes1.fr/laurent.moret-bailly/docpedag/polys/tano04.pdf
prop-fr:wikiPageUsesTemplate
prop-fr:éditeur
dcterms:subject
rdfs:comment
  • En mathématiques, et plus précisément en théorie des anneaux, un idéal fractionnaire est une généralisation de la définition d'un idéal. Ce concept doit son origine à la théorie algébrique des nombres. Pour résoudre certaines équations diophantiennes, cette théorie utilise des anneaux d'entiers généralisant celui des entiers relatifs.
  • Lomený ideál je matematický koncept z oboru komutativní algebry, kde se vyskytuje v kontextu oborů integrity, a to zejména Dedekindových oborů. Do určité míry si lze lomené ideály představovat zkrátka jako ideály, v kterých jsou povoleny jmenovatele.
  • In mathematics, in particular commutative algebra, the concept of fractional ideal is introduced in the context of integral domains and is particularly fruitful in the study of Dedekind domains. In some sense, fractional ideals of an integral domain are like ideals where denominators are allowed. In contexts where fractional ideals and ordinary ring ideals are both under discussion, the latter are sometimes termed integral ideals for clarity.
  • В коммутативной алгебре, дробный идеал — это обобщение понятия идеала целостного кольца, особенно полезное при изучении дедекиндовых колец. Условно говоря, дробные идеалы — это идеалы со знаменателями. В случаях, когда одновременно обсуждаются дробные и обычные идеалы, последние называют целыми идеалами.
  • In matematica, gli ideali frazionari sono generalizzazioni degli ideali di un anello usati nello studio dei domini d'integrità; possono essere pensati come ideali a cui è permesso avere un denominatore comune. In questo contesto, gli ideali propri dell'anello sono a volte detti ideali interi.
  • Der Begriff gebrochenes Ideal ist eine Verallgemeinerung des Idealbegriffes aus dem mathematischen Teilgebiet der Algebra, die insbesondere in der algebraischen Zahlentheorie eine wichtige Rolle spielt. In gewisser Weise ist der Übergang von gewöhnlichen zu gebrochenen Idealen analog zum Verhältnis zwischen ganzen und rationalen Zahlen.Dieser Artikel beschäftigt sich mit kommutativer Algebra. Insbesondere sind alle betrachteten Ringe kommutativ und haben ein Einselement.
rdfs:label
  • Idéal fractionnaire
  • Fractional ideal
  • Gebrochenes Ideal
  • Ideale frazionario
  • Lomený ideál
  • Дробный идеал
owl:sameAs
http://www.w3.org/ns/prov#wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbpedia-owl:wikiPageWikiLink of
is foaf:primaryTopic of