Una hipérbola (del griego ὑπερβολή) es una sección cónica, una curva abierta de dos ramas obtenida cortando un cono recto por un plano oblicuo al eje de simetría, y con ángulo menor que el de la generatriz respecto del eje de revolución.

PropertyValue
dbpedia-owl:abstract
  • Una hipérbola (del griego ὑπερβολή) es una sección cónica, una curva abierta de dos ramas obtenida cortando un cono recto por un plano oblicuo al eje de simetría, y con ángulo menor que el de la generatriz respecto del eje de revolución.
  • 쌍곡선(雙曲線)은 평면 위에 있는 두 정점으로부터의 거리의 차가 일정한 점들의 집합으로 만들어지는 곡선을 말한다. 이때 기준이 되는 두 정점을 초점이라 한다.한초점이 극히 멀어질수록 쌍곡선은 포물선에 가까워진다. 한편 쌍곡선은 초점에서 멀어질수록 점근선이라고 불리는 직선에 가까워지며, 쌍곡선의 점근선은 두 개가 있다.
  • Een hyperbool (Grieks ὑπερβολή, overtreffing) is in de meetkunde een tweedimensionale figuur, een kegelsnede, die wordt gevormd door de snijlijnen van een kegel en een vlak dat beide helften van de kegel snijdt. Een hyperbool bestaat daarom uit twee takken, de snijlijnen met de beide delen van de kegel.
  • Hiperbola fokuak deritzen bi puntu finkoetarainoko distantzien kendura konstantea duten planoko puntu guztien leku geometrikoa da. Kono bati konoaren oinarriarekiko ebakidura elkartzut bat egitean agertzen den irudi geometrikoa da.
  • In mathematics, a hyperbola (plural hyperbolas or hyperbolae) is a type of smooth curve, lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, called connected components or branches, that are mirror images of each other and resemble two infinite bows. The hyperbola is one of the four kinds of conic section, formed by the intersection of a plane and a double cone. (The other conic sections are the parabola, the ellipse, and the circle; the circle is a special case of the ellipse). If the plane intersects both halves of the double cone but does not pass through the apex of the cones then the conic is a hyperbola.Hyperbolas arise in many ways: as the curve representing the function in the Cartesian plane, as the appearance of a circle viewed from within it, as the path followed by the shadow of the tip of a sundial, as the shape of an open orbit (as distinct from a closed elliptical orbit), such as the orbit of a spacecraft during a gravity assisted swing-by of a planet or more generally any spacecraft exceeding the escape velocity of the nearest planet, as the path of a single-apparition comet (one travelling too fast to ever return to the solar system), as the scattering trajectory of a subatomic particle (acted on by repulsive instead of attractive forces but the principle is the same), and so on.Each branch of the hyperbola has two arms which become straighter (lower curvature) further out from the center of the hyperbola. Diagonally opposite arms, one from each branch, tend in the limit to a common line, called the asymptote of those two arms. So there are two asymptotes, whose intersection is at the center of symmetry of the hyperbola, which can be thought of as the mirror point about which each branch reflects to form the other branch. In the case of the curve the asymptotes are the two coordinate axes.Hyperbolas share many of the ellipses' analytical properties such as eccentricity, focus, and directrix. Typically the correspondence can be made with nothing more than a change of sign in some term. Many other mathematical objects have their origin in the hyperbola, such as hyperbolic paraboloids (saddle surfaces), hyperboloids ("wastebaskets"), hyperbolic geometry (Lobachevsky's celebrated non-Euclidean geometry), hyperbolic functions (sinh, cosh, tanh, etc.), and gyrovector spaces (a geometry used in both relativity and quantum mechanics which is not Euclidean).
dbpedia-owl:thumbnail
dbpedia-owl:wikiPageExternalLink
dbpedia-owl:wikiPageID
  • 42858 (xsd:integer)
dbpedia-owl:wikiPageLength
  • 35620 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 73 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 109010166 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
prop-fr:année
  • 1843 (xsd:integer)
  • 2005 (xsd:integer)
prop-fr:auteur
  • Bernard Vitrac
prop-fr:commons
  • Category:Hyperbolas
prop-fr:commonsTitre
  • Hyperbole
prop-fr:id
  • Vitrac
prop-fr:isbn
  • 2100494139 (xsd:integer)
prop-fr:lireEnLigne
  • http://books.google.fr/books?id=aO42AAAAMAAJ&hl=fr&pg=PR3#v=onepage&q&f=false
prop-fr:nom
  • Tauvel
  • Bergery
prop-fr:prénom
  • Patrice
  • Claude Lucien
prop-fr:site
prop-fr:titre
  • Géométrie
  • Les géomètres de l'antiquité 8- Apollonius de Perge et la tradition des coniques
  • Géométrie des courbes appliquée aux arts
prop-fr:url
  • http://culturemath.ens.fr/histoire%20des%20maths/htm/Vitrac/grec-8.html
prop-fr:wikiPageUsesTemplate
prop-fr:éditeur
  • Thiel
prop-fr:édition
  • Dunod
dcterms:subject
rdfs:comment
  • Una hipérbola (del griego ὑπερβολή) es una sección cónica, una curva abierta de dos ramas obtenida cortando un cono recto por un plano oblicuo al eje de simetría, y con ángulo menor que el de la generatriz respecto del eje de revolución.
  • 쌍곡선(雙曲線)은 평면 위에 있는 두 정점으로부터의 거리의 차가 일정한 점들의 집합으로 만들어지는 곡선을 말한다. 이때 기준이 되는 두 정점을 초점이라 한다.한초점이 극히 멀어질수록 쌍곡선은 포물선에 가까워진다. 한편 쌍곡선은 초점에서 멀어질수록 점근선이라고 불리는 직선에 가까워지며, 쌍곡선의 점근선은 두 개가 있다.
  • Een hyperbool (Grieks ὑπερβολή, overtreffing) is in de meetkunde een tweedimensionale figuur, een kegelsnede, die wordt gevormd door de snijlijnen van een kegel en een vlak dat beide helften van de kegel snijdt. Een hyperbool bestaat daarom uit twee takken, de snijlijnen met de beide delen van de kegel.
  • Hiperbola fokuak deritzen bi puntu finkoetarainoko distantzien kendura konstantea duten planoko puntu guztien leku geometrikoa da. Kono bati konoaren oinarriarekiko ebakidura elkartzut bat egitean agertzen den irudi geometrikoa da.
  • In mathematics, a hyperbola (plural hyperbolas or hyperbolae) is a type of smooth curve, lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, called connected components or branches, that are mirror images of each other and resemble two infinite bows. The hyperbola is one of the four kinds of conic section, formed by the intersection of a plane and a double cone.
rdfs:label
  • Hyperbole (mathématiques)
  • Hiperbola
  • Hiperbola
  • Hiperbola (matematyka)
  • Hipèrbola
  • Hipérbola
  • Hipérbole
  • Hyperbel (Mathematik)
  • Hyperbola
  • Hyperbola
  • Hyperbool (meetkunde)
  • Iperbole (geometria)
  • Гипербола (математика)
  • Хипербола
  • 双曲線
  • 쌍곡선
owl:sameAs
http://www.w3.org/ns/prov#wasDerivedFrom
foaf:depiction
foaf:homepage
foaf:isPrimaryTopicOf
is dbpedia-owl:wikiPageDisambiguates of
is dbpedia-owl:wikiPageWikiLink of
is foaf:primaryTopic of