In der Mathematik und insbesondere der deskriptiven Mengenlehre ist die Borel-Hierarchie eine stufenweise Aufteilung der Borelschen σ-Algebra zu einem topologischen Raum. Sie stellt einen konstruktiven Aufbau aller Borel-Mengen dar. Ist eine Eigenschaft über alle Borel-Mengen zu beweisen, ist dies oft mittels transfiniter Induktion über alle Ebenen der Borel-Hierarchie möglich.

PropertyValue
dbpedia-owl:abstract
  • In mathematical logic, the Borel hierarchy is a stratification of the Borel algebra generated by the open subsets of a Polish space; elements of this algebra are called Borel sets. Each Borel set is assigned a unique countable ordinal number called the rank of the Borel set. The Borel hierarchy is of particular interest in descriptive set theory.One common use of the Borel hierarchy is to prove facts about the Borel sets using transfinite induction on rank. Properties of sets of small finite ranks are important in measure theory and analysis.
  • In der Mathematik und insbesondere der deskriptiven Mengenlehre ist die Borel-Hierarchie eine stufenweise Aufteilung der Borelschen σ-Algebra zu einem topologischen Raum. Sie stellt einen konstruktiven Aufbau aller Borel-Mengen dar. Ist eine Eigenschaft über alle Borel-Mengen zu beweisen, ist dies oft mittels transfiniter Induktion über alle Ebenen der Borel-Hierarchie möglich.
dbpedia-owl:wikiPageID
  • 2223487 (xsd:integer)
dbpedia-owl:wikiPageLength
  • 4570 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 14 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 96898997 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
prop-fr:fr
  • Hiérarchie de Wadge
prop-fr:lang
  • en
prop-fr:trad
  • Wadge hierarchy
prop-fr:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • In der Mathematik und insbesondere der deskriptiven Mengenlehre ist die Borel-Hierarchie eine stufenweise Aufteilung der Borelschen σ-Algebra zu einem topologischen Raum. Sie stellt einen konstruktiven Aufbau aller Borel-Mengen dar. Ist eine Eigenschaft über alle Borel-Mengen zu beweisen, ist dies oft mittels transfiniter Induktion über alle Ebenen der Borel-Hierarchie möglich.
  • In mathematical logic, the Borel hierarchy is a stratification of the Borel algebra generated by the open subsets of a Polish space; elements of this algebra are called Borel sets. Each Borel set is assigned a unique countable ordinal number called the rank of the Borel set. The Borel hierarchy is of particular interest in descriptive set theory.One common use of the Borel hierarchy is to prove facts about the Borel sets using transfinite induction on rank.
rdfs:label
  • Hiérarchie de Borel
  • Borel hierarchy
  • Borel-Hierarchie
owl:sameAs
http://www.w3.org/ns/prov#wasDerivedFrom
foaf:isPrimaryTopicOf
is dbpedia-owl:wikiPageDisambiguates of
is dbpedia-owl:wikiPageRedirects of
is dbpedia-owl:wikiPageWikiLink of
is foaf:primaryTopic of