L'hexagone de Sierpinski est une des fractales réalisées par le mathématicien Wacław Sierpiński[réf. nécessaire].

PropertyValue
dbpedia-owl:abstract
  • L'hexagone de Sierpinski est une des fractales réalisées par le mathématicien Wacław Sierpiński[réf. nécessaire].
  • A hexaflake is a fractal constructed by iteratively exchanging each hexagon by a flake of seven hexagons; it is a special case of the n-flake. As such, a hexaflake would have 7n-1 hexagons in its nth iteration. Its boundary is the von Koch flake, and contains an infinite number of Koch snowflakes (black or white). Its Hausdorff dimension is equal to ln(7)/ln(3), approximately 1.7712.It is also the projection of the cantor cube onto the plane orthogonal to its main diagonal.
dbpedia-owl:thumbnail
dbpedia-owl:wikiPageID
  • 6902070 (xsd:integer)
dbpedia-owl:wikiPageLength
  • 2886 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 9 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 108646893 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • L'hexagone de Sierpinski est une des fractales réalisées par le mathématicien Wacław Sierpiński[réf. nécessaire].
  • A hexaflake is a fractal constructed by iteratively exchanging each hexagon by a flake of seven hexagons; it is a special case of the n-flake. As such, a hexaflake would have 7n-1 hexagons in its nth iteration. Its boundary is the von Koch flake, and contains an infinite number of Koch snowflakes (black or white). Its Hausdorff dimension is equal to ln(7)/ln(3), approximately 1.7712.It is also the projection of the cantor cube onto the plane orthogonal to its main diagonal.
rdfs:label
  • Hexagone de Sierpinski
  • Hexaflake
owl:sameAs
http://www.w3.org/ns/prov#wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is foaf:primaryTopic of