En mathématiques, et plus précisément en algèbre générale, un groupe est un ensemble muni d'une loi de composition interne associative admettant un élément neutre et, pour chaque élément de l'ensemble, un élément symétrique.La structure de groupe est commune à de nombreux ensembles de nombres — par exemple les nombres entiers relatifs, munis de la loi d'addition.

PropertyValue
dbpedia-owl:abstract
  • En mathématiques, et plus précisément en algèbre générale, un groupe est un ensemble muni d'une loi de composition interne associative admettant un élément neutre et, pour chaque élément de l'ensemble, un élément symétrique.La structure de groupe est commune à de nombreux ensembles de nombres — par exemple les nombres entiers relatifs, munis de la loi d'addition. Mais cette structure se retrouve aussi dans de nombreux autres domaines, notamment en algèbre, ce qui en fait une notion centrale des mathématiques modernes.La structure de groupe possède un lien étroit avec la notion de symétrie. Un groupe de symétrie décrit les symétries d'une forme géométrique : il consiste en un ensemble de transformations géométriques qui laissent l'objet invariant, l'opération consistant à composer de telles transformations, c'est-à-dire à les appliquer l'une après l'autre. De tels groupes de symétrie, en particulier les groupes de Lie continus, jouent un rôle important dans de nombreuses sciences. Les groupes généraux linéaires, par exemple, sont utilisés en physique fondamentale pour comprendre les lois de la relativité restreinte et les phénomènes liés à la symétrie des molécules en chimie.
  • In mathematics, a group is a set of elements together with an operation that combines any two of its elements to form a third element satisfying four conditions called the group axioms, namely closure, associativity, identity and invertibility. One of the most familiar examples of a group is the set of integers together with the addition operation; the addition of any two integers forms another integer. The abstract formalization of the group axioms, detached as it is from the concrete nature of any particular group and its operation, allows entities with highly diverse mathematical origins in abstract algebra and beyond to be handled in a flexible way, while retaining their essential structural aspects. The ubiquity of groups in numerous areas within and outside mathematics makes them a central organizing principle of contemporary mathematics.Groups share a fundamental kinship with the notion of symmetry. For example, a symmetry group encodes symmetry features of a geometrical object: the group consists of the set of transformations that leave the object unchanged and the operation of combining two such transformations by performing one after the other. Lie groups are the symmetry groups used in the Standard Model of particle physics; Point groups are used to help understand symmetry phenomena in molecular chemistry; and Poincaré groups can express the physical symmetry underlying special relativity.The concept of a group arose from the study of polynomial equations, starting with Évariste Galois in the 1830s. After contributions from other fields such as number theory and geometry, the group notion was generalized and firmly established around 1870. Modern group theory—an active mathematical discipline—studies groups in their own right. To explore groups, mathematicians have devised various notions to break groups into smaller, better-understandable pieces, such as subgroups, quotient groups and simple groups. In addition to their abstract properties, group theorists also study the different ways in which a group can be expressed concretely (its group representations), both from a theoretical and a computational point of view. A theory has been developed for finite groups, which culminated with the classification of finite simple groups announced in 1983. Since the mid-1980s, geometric group theory, which studies finitely generated groups as geometric objects, has become a particularly active area in group theory.
  • In matematica, un gruppo è una struttura algebrica formata da un insieme non vuoto con un'operazione binaria interna (come ad esempio la somma o il prodotto) che soddisfa alcuni assiomi, cioè l'associatività, l'esistenza dell'elemento neutro e dell'inverso.Tali assiomi sono soddisfatti da numerose strutture algebriche, come ad esempio i numeri interi con l'operazione di addizione, ma essi sono molto più generali e prescindono dalla natura particolare del gruppo considerato. In questo modo diviene possibile lavorare in maniera flessibile con oggetti matematici di natura e origine molto diverse tra loro, riconoscendone alcuni importanti aspetti strutturali comuni. Il ruolo chiave dei gruppi in numerose aree interne ed esterne alla matematica ne fa uno dei concetti fondamentali della matematica moderna. Il concetto di gruppo nacque dagli studi sulle equazioni polinomiali, iniziati da Évariste Galois negli anni 1830. In seguito a contributi provenienti da altri settori della matematica come la teoria dei numeri e la geometria, la nozione di gruppo fu generalizzata e definita stabilmente attorno al 1870. La moderna teoria dei gruppi - una disciplina matematica molto attiva - si occupa dello studio astratto dei gruppi. Mathematical Reviews conta 3.224 articoli di ricerca di teoria dei gruppi e sue generalizzazioni pubblicati nel solo 2005.I matematici hanno sviluppato varie nozioni per spezzare i gruppi in parti più piccole e più facili da studiare, come i sottogruppi ed i quozienti. Oltre alle loro proprietà astratte, i teorici dei gruppi si occupano anche dei differenti modi in cui un gruppo può essere espresso concretamente, da un punto di vista sia teorico, sia computazionale. Una teoria particolarmente ricca è stata sviluppata per i gruppi finiti, culminata con la monumentale classificazione dei gruppi semplici finiti, completata nel 1983.
  • Em matemática, um grupo é um conjunto de elementos associados a uma operação que combina dois elementos quaisquer para formar um terceiro. Para se qualificar como grupo o conjunto e a operação devem satisfazer algumas condições chamadas axiomas de grupo: associatividade, identidade e elementos inversos. Apesar destes serem comuns a muitas estruturas matemáticas familiares - e.g. os números inteiros munidos da adição formam um grupo - a formulação dos axiomas é independente da natureza concreta do grupo e sua operação. Isso permite lidar-se com entidade de origens matemáticas completamente diferentes de uma maneira flexível, mas retendo os aspectos estruturais essenciais de muitos objetos da álgebra abstrata e além. A ubiquidade dos grupos em inúmeras áreas - dentro e fora da matemática - os tornam um princípio organizador central da matemática contemporânea.Grupos compartilham um parentesco fundamental com a noção de simetria. Um grupo de simetria guarda informações sobre as simetrias de um objeto geométrico. Ele consiste do conjunto de transformações que preservam o objeto inalterado e a operação de combinar duas dessas transformações aplicando-as uma após a outra. Tais grupos de simetria, particularmente os grupos de Lie contínuos, têm um importante papel em muitas disciplinas. Grupos de matrizes, por exemplo, podem ser usados para compreender leis físicas fundamentais da relatividade especial e fenômenos em química molecular.O conceito de grupo emergiu do estudo de equações de polinômios com Évariste Galois na década de 1830. Após contribuições vindas de outros ramos da matemática, como teoria dos números e geometria, a noção de grupo foi generalizada e se estabeleceu firmemente por volta de 1870. A teoria dos grupos moderna - uma área muito ativa de pesquisa - estuda os grupos em si mesmos. Para explorá-los, matemáticos formularam várias noções para quebrar grupos em partes menores e mais compreensíveis, como subgrupos, grupos quocientes e grupos simples. Além das propriedades abstratas, matemáticos estudam as diferentes maneiras em que um grupo pode ser expresso concretamente (as representações do grupo), tanto de um ponto-de-vista teorético quanto prático-computacional. Em particular, uma teoria ricamente desenvolvida é a dos grupos finitos, que culminou com a monumental classificação dos grupos finitos simples, completada em 1983.Grupos estão por trás de muitas estruturas algébricas, como corpos e espaços vetoriais, e são uma importante ferramenta para o estudo de simetrias. Por estas razões, a Teoria de Grupos é considerada uma área importante da matemática moderna, e tem muitas aplicações em Física Matemática, por exemplo em física de partículas.
  • Un grup és una estructura algebraica formada per un conjunt G d'elements on hi ha definida una operació binària, com pot ser la suma o el producte, i que compleix unes propietats determinades que detallem més endavant.Molts objectes estudiats en matemàtiques tenen estructura de grup. Entre aquests trobem els nombres enters, els racionals, els reals i els complexos amb l'operació de la suma, així com els racionals, reals i complexos sense el zero amb l'operació del producte. També té estructura de grup el conjunt de les matrius quadrades no singulars amb el producte o el conjunt de les funcions invertibles amb la composició.
  • In de groepentheorie, een deelgebied van de wiskunde, is een groep een bepaalde algebraïsche structuur. Een groep bestaat uit een verzameling V en een operatie, die altijd op twee elementen van V werkt. Deze operatie is dus een binaire operatie. Groepen voldoen aan een aantal voorwaarden of axioma's. Er zijn vier groepsaxioma's: de operatie is gesloten, de operatie is associatief, er is in de groep een element de identiteit en ieder element in de groep heeft een invertibiliteit. Bijvoorbeeld de gehele getallen vormen met de optelling een groep.De axioma's moeten voor alle groepen gelden. Groepen onderling zijn allemaal verschillend, zij vormen het onderwerp van de groepentheorie. Met groepen kunnen de structurele aspecten van objecten van uiteenlopende oorsprong op uniforme wijze worden bestudeerd. De alomtegenwoordigheid van de groepen op tal van gebieden, zowel binnen als buiten de wiskunde, maakt van groepen een centraal ordenend principe binnen de hedendaagse wiskunde.Groepen delen een fundamentele verwantschap met het begrip symmetrie. Een symmetriegroep codeert symmetrie-eigenschappen van een meetkundig object: Hij bestaat uit de verzameling van transformaties die het object ongewijzigd laten, en als operatie het na elkaar uitvoeren van twee van zulke transformaties. Zulke symmetriegroepen, in het bijzonder de continue Lie-groepen, spelen een belangrijke rol in tal van academische disciplines. Matrixgroepen worden bijvoorbeeld gebruikt om de natuurwetten die ten grondslag liggen aan de speciale relativiteitstheorie en symmetrie-fenomenen in de moleculaire scheikunde, te begrijpen.Het concept van een groep is ontstaan uit de studie van vergelijkingen. Évariste Galois in de jaren 1830 was een van de wiskundigen die hieraan rekenden. De theorie die het verband legt tussen polynomen en groepen, is naar hem genoemd. Na bijdragen vanuit andere gebieden, zoals de getaltheorie en de meetkunde, kreeg het begrip groep in de wiskunde zijn algemene vorm, en kreeg de groepentheorie rond 1870 een stevige basis. Om groepen te onderzoeken hebben wiskundigen verschillende begrippen gedefinieerd die het mogelijk maken om groepen op te breken in kleinere, beter begrijpelijke stukken, zoals ondergroepen, quotiëntgroepen en enkelvoudige groepen. Naast de abstracte eigenschappen van groepen bestuderen groepstheoretici ook de verschillende manieren waarop een groep concreet kan worden uitgedrukt (haar groepsrepresentaties), zowel vanuit een theoretisch als een computationeel standpunt. Er heeft zich een bijzondere rijke theorie van de eindige groepen ontwikkeld, die culmineerde in de classificatie van eindige enkelvoudige groepen, die werd voltooid in 1983. Sinds het midden van de jaren 1980 is de meetkundige groepentheorie, die eindig gegenereerde groepen als meetkundige objecten bestudeert, uitgegroeid tot een bijzonder actief onderzoeksgebied binnen de groepentheorie.
  • Grupa je v matematice algebraická struktura, která popisuje a formalizuje koncept symetrie. Formálně se zavádí jako množina spolu s binární operací splňující níže uvedené axiomy. Matematická disciplína zabývající se studiem grup se nazývá teorie grup. Příklady grup jsou celá čísla s operací sčítání, nenulová racionální čísla s operací násobení, symetrie pravidelných geometrických útvarů, množiny regulárních matic a automorfismy různých algebraických struktur.Teorie grup vznikla počátkem 19. století. U jejího zrodu stál matematik Évariste Galois, který dokázal, že polynomiální rovnice nelze obecně řešit pomocí odmocnin. Grupy našly později uplatnění také v geometrii, teorii čísel, algebraické topologii a dalších matematických oborech. Klasifikace jednoduchých konečných grup byla dokončena koncem 20. století a patří k největším výsledkům matematiky vůbec.Pojem grupy abstraktně popisuje či zobecňuje mnoho matematických objektů a má významné uplatnění i v příbuzných oborech – ve fyzice, informatice a chemii. Reprezentace grup hrají důležitou úlohu v teoriích jako jsou částicová fyzika, kvantová teorie pole anebo teorie strun. V informatice se grupy vyskytují například v kryptografii, kódování anebo zpracování obrazu, chemie používá grupy pro popis symetrií molekul a krystalových mřížek v krystalografii.
  • Тази статия се отнася до групите в математиката. За други значения на понятието виж пояснителната страница.Група е вид алгебрична структура, която представлява едно от най-основните понятия в математиката. Една група се състои грубо казано от трансформациите на даден обект. Например множеството от ротации на един правилен n-ъгълник е група с n елемента. Пример за по-сложна група е множеството от трансформациите на куба на Рубик. Всяка група е снабдена с операция която на всеки две трансформации съпоставя тяхната композиция. За да могат групите да се изучават в най-голяма общност те се дефинират аксиоматично без да се конкретизира върху кой обект действат. Група, това е множество снабдено с операция, която на всеки два елемента съпоставя трети, и която изпълнява определени аксиоми. Груповата операция трябва да е асоциативна, да има неутрален елемент и всеки елемент на групата трябва да има обратен. Множеството на целите числа заедно с операцията събиране е друг пример за група.
  • En álgebra abstracta, un grupo es una estructura algebraica que consta de un conjunto con una operación que combina cualquier pareja de sus elementos para formar un tercer elemento. Para que se pueda calificar como un grupo, el conjunto y la operación deben satisfacer algunas condiciones llamadas axiomas de grupo, estas condiciones son: tener la propiedad asociativa, tener elemento identidad y elemento inverso. Mientras que estas características son familiares a muchas estructuras matemáticas, como los diferentes sistemas de números (por ejemplo los enteros dotados de la operación de adición forman una estructura de grupo), la formulación de los axiomas se separa de la naturaleza concreta del grupo y su funcionamiento. Esto permite, en álgebra abstracta y otros campos, manejar entidades de orígenes matemáticos muy diferentes de una manera flexible, mientras se conservan aspectos estructurales esenciales de muchos objetos. La ubicuidad de los grupos en numerosas áreas (tanto dentro como fuera de las matemáticas) los convierte en un principio central en torno al cual se organizan las matemáticas contemporáneas.Los grupos comparten un parentesco fundamental con la noción de simetría. Un grupo de simetría codifica las características de simetría de un objeto geométrico: consiste en el conjunto de transformaciones que dejan inalterado el objeto, y la operación de combinar dos de estas transformaciones realizando una tras la otra. Tales grupos de simetría, especialmente los grupos de Lie continuos, tienen un papel importante en muchas disciplinas académicas. Los grupos de matrices, por ejemplo, se pueden utilizar para entender las leyes físicas fundamentales en que se basan la relatividad y los fenómenos de simetría en la química molecular.El concepto de un grupo surgió del estudio de ecuaciones polinómicas, comenzando con Évariste Galois durante los años 1830. Después de contribuciones desde otros campos como la teoría de números y la geometría, la noción de grupo se generalizó y se estableció firmemente en torno a 1870. La moderna teoría de grupos (una disciplina matemática muy activa) estudia los grupos en sí. Con el fin de explorar los grupos, los matemáticos han ideado diversas nociones con tal de dividir grupos en trozos más pequeños, más comprensibles, como subgrupos, grupos cociente y grupos simples. Además de sus propiedades abstractas, los teóricos de los grupos también estudian las maneras en que un grupo se puede expresar en forma concreta (sus representaciones de grupo), tanto desde un punto de vista teórico como de un punto de vista computacional. Una teoría especialmente rica ha desarrollado para grupos finitos, que culminó con la clasificación de los grupos simples finitos completada en 1983. Asimismo, desde mediados de 1980, la teoría de grupos geométricos, que estudia los grupos de generación finita como objetos geométricos, se ha convertido en un área particularmente activa en la teoría de grupos.
  • 수학에서 군(群)은 어떤 집합과 이항연산이 가질 수 있는 특정한 대수적 구조로, 그 이항연산이 닫혀 있고, 항등원, 역원이 존재하고, 결합법칙을 만족하는 구조이다.군이 추상화할 수 있는 대상은 다양하다. 정수나 실수 내에서의 덧셈 연산은 군의 정의를 만족하며, 어떤 도형을 회전하거나 대칭시키는 등의 동작 또한 군이 된다.
  • Dalam matematika, grup adalah suatu himpunan, beserta satu operasi biner, seperti perkalian atau penjumlahan, yang memenuhi beberapa aksioma yang diuraikan di bawah ini. Misalnya, himpunan bilangan bulat adalah suatu grup terhadap operasi penjumlahan. Cabang matematika yang mempelajari grup disebut teori grup. Asal-usul teori grup berawal dari kerja Evariste Galois (1830), yang berkaitan dengan masalah persamaan aljabar yang terpecahkan dengan radikal. Sebelum kerja Galois, grup lebih banyak dipelajari secara kongkrit, dalam bentuk permutasi; beberapa aspek teori grup abelian dikenal dalam teori bentuk-bentuk kuadrat. Banyak sekali obyek yang dipelajari dalam matematika ternyata berupa grup. Hal ini mencakup sistem bilangan, seperti bilangan bulat, bilangan rasional, bilangan nyata, dan bilangan kompleks terhadap penjumlahan, atau bilangan rasional, bilangan nyata, dan bilangan kompleks yang tak-nol, masing-masing terhadap perkalian. Contoh penting lainnya misalnya matriks non-singular terhadap perkalian, dan secara umum, fungsi terinverskan terhadap komposisi fungsi. Teori grup memungkinkan sifat-sifat sistem-sistem ini dan berbagai sistem lain untuk dipelajari dalam lingkup yang umum, dan hasilnya dapat diterapkan secara luas. Teori grup juga merupakan sumber kaya berbagai teorema yang berlaku dalam lingkup grup.
  • In der Mathematik ist eine Gruppe eine Menge von Elementen zusammen mit einer Verknüpfung, die je zwei Elementen der Menge ein drittes Element derselben Menge zuordnet und dabei drei Bedingungen, die Gruppenaxiome, erfüllt. Diese umfassen das Assoziativgesetz, die Existenz eines neutralen Elements und die Existenz von inversen Elementen. Eine der bekanntesten Gruppen ist die Menge der ganzen Zahlen mit der Addition als Verknüpfung. Das mathematische Teilgebiet, das sich der Erforschung der Gruppenstruktur widmet, wird Gruppentheorie genannt. Es ist ein Teilgebiet der Algebra. Die Anwendungsgebiete der Gruppen, auch außerhalb der Mathematik, machen sie zu einem zentralen Konzept gegenwärtiger Mathematik.Gruppen teilen eine fundamentale Verwandtschaft mit der Idee der Symmetrie. Beispielsweise verkörpert die Symmetriegruppe eines geometrischen Objekts dessen symmetrische Eigenschaften. Sie besteht aus der Menge derjenigen Abbildungen (z. B. Drehungen), die das Objekt unverändert lassen, und der Hintereinanderausführung solcher Abbildungen als Verknüpfung. Lie-Gruppen sind die Symmetriegruppen des Standardmodells der Teilchenphysik, Punktgruppen werden genutzt, um in der Chemie Symmetrie auf molekularer Ebene zu verstehen; und Poincaré-Gruppen können die Symmetrien ausdrücken, die der speziellen Relativitätstheorie zugrunde liegen.Das Konzept der Gruppe entstand aus Évariste Galois’ Untersuchungen von Polynomgleichungen in den 1830er Jahren. Nach Beiträgen aus anderen mathematischen Gebieten wie der Zahlentheorie und der Geometrie wurde der Begriff der Gruppe verallgemeinert. Um 1870 war er fest etabliert und wird heute in dem eigenständigen Gebiet der Gruppentheorie behandelt. Um Gruppen zu erforschen, haben Mathematiker spezielle Begriffe entwickelt, um Gruppen in kleinere, leichter verständliche Bestandteile zu zerlegen, wie z. B. Untergruppen, Faktorgruppen und einfache Gruppen. Neben ihren abstrakten Eigenschaften untersuchen Gruppentheoretiker auch Möglichkeiten, wie Gruppen konkret ausgedrückt werden können (Darstellungstheorie), sowohl für theoretische Untersuchungen als auch für konkrete Berechnungen. Eine besonders reichhaltige Theorie wurde für die endlichen Gruppen entwickelt, was 1983 in der Klassifizierung der endlichen einfachen Gruppen gipfelte. Diese spielen für Gruppen eine vergleichbare Rolle wie die Primzahlen für natürliche Zahlen.
  • 数学における群(ぐん、group)とは最も基本的と見なされる代数的構造の一つである。群はそれ自体興味深い考察対象であり、群論における主要な研究対象となっているが、数学や物理学全般にわたってさまざまな構成に対する基礎的な枠組みを与えている。
  • Öbek (veya grup), soyut cebirin en temel matematiksel yapısıdır. Öbek, öncelikle bir kümedir, öğeleri boş olmayan bir küme ve üzerine tanımlı bir ikili işlemi olan bir kümedir. Öbek kuramı, bu işlemin özelliklerine göre öbekleri inceler. Soyut cebirin halka, cisim, modül gibi diğer yapılarının temelini oluşturur.
  • Гру́ппа в математике — множество элементов с определённой на нём ассоциативной бинарной операцией, унарной операцией взятия обратного элемента и выделенным нейтральным элементом, связанное некоторыми естественными свойствами — групповыми аксиомами[⇨]. Ветвь общей алгебры занимающаяся группами, называется теорией групп.Наиболее известный пример группы — множество целых чисел, снабжённое операцией сложения: сумма любых двух целых также даёт целое число, число с противоположным знаком даёт обратный элемент, а роль нейтрального элемента играет нуль. Другие примеры — множество вещественных чисел с операцией сложения, множество вращений плоскости вокруг начала координат. Благодаря абстрактному определению группы через систему аксиом, не привязанной к специфике образующих множеств, в теории групп создан универсальный аппарат для изучения широкого класса математических объектов самого разнообразного происхождения с точки зрения общих свойств их структуры. Вездесущность групп в математике и за её пределами делает их важнейшей конструкцией в современной математике и её приложениях.Группа фундаментально родственна понятию симметрии и является важным инструментом в изучении всех её проявлений. Например, группа симметрии отражает свойства геометрического объекта: она состоит из множества преобразований, оставляющих объект неизменным, и операции комбинирования двух таких преобразований, следующих друг за другом. Такие группы симметрии, как группы Ли, применяются в Стандартной модели физики элементарных частиц; точечные группы симметрии помогают понять явление молекулярной симметрии в химии; группы Пуанкаре характеризуют физическую симметрию, лежащую в основе специальной теории относительности.Понятие группы ввёл Эварист Галуа, изучая многочлены в 1830-е годы. Новые результаты из таких областей, как теория чисел и геометрия, позволили обобщить концепцию групп и прочно утвердить их в математике к 1870 году. Современная теория групп является активным разделом математики. Один из наиболее впечатляющих результатов достигнут в монументальной классификации простых конечных групп, о завершении которой объявлено в 1983 году: доказательство теоремы составляет десятки тысяч страниц сотен научных статей более ста авторов, опубликованных с 1955 года, но статьи продолжают появляться из-за обнаруживаемых пробелов в доказательстве. С середины 1980-х годов значительное развитие получила геометрическая теория групп, изучающая конечно-порождённые группы как геометрические объекты.
  • Grupa – jedna ze struktur algebraicznych: zbiór niepusty, na którym określono pewne łączne działanie dwuargumentowe wewnętrzne, dla którego istnieje element odwrotny do każdego elementu oraz element neutralny. Można powiedzieć, że grupą jest monoid, w którym każdy element ma element odwrotny. Dział matematyki badający własności grup nazywa się teorią grup.
dbpedia-owl:thumbnail
dbpedia-owl:wikiPageExternalLink
dbpedia-owl:wikiPageID
  • 8191 (xsd:integer)
dbpedia-owl:wikiPageLength
  • 72914 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 369 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 108867929 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
prop-fr:année
  • 1933 (xsd:integer)
  • 2004 (xsd:integer)
prop-fr:auteur
prop-fr:fr
  • Daniel Gorenstein
  • Groupe algébrique adélique
  • groupe fondamental étale
  • théorie algorithmique des groupes
  • théorie des représentations modulaires
prop-fr:id
  • Bauer1933
prop-fr:isbn
  • 3540200347 (xsd:double)
prop-fr:lang
  • en
prop-fr:lienPériodique
  • Annales Henri Poincaré
prop-fr:nom
prop-fr:numéro
  • 1 (xsd:integer)
prop-fr:pages
  • 1 (xsd:integer)
  • 305 (xsd:integer)
prop-fr:périodique
  • Annales de l'IHP
prop-fr:texte
  • groupes algébriques adéliques
prop-fr:titre
  • Introduction à la théorie des groupes de Lie
  • Introduction à la théorie des groupes et à ses applications en physique quantique
prop-fr:trad
  • Adelic algebraic group
  • Computational group theory
  • Modular representation theory
  • Étale fundamental group
prop-fr:urlTexte
prop-fr:volume
  • 4 (xsd:integer)
prop-fr:wikiPageUsesTemplate
prop-fr:éditeur
  • Springer
dcterms:subject
rdfs:comment
  • En mathématiques, et plus précisément en algèbre générale, un groupe est un ensemble muni d'une loi de composition interne associative admettant un élément neutre et, pour chaque élément de l'ensemble, un élément symétrique.La structure de groupe est commune à de nombreux ensembles de nombres — par exemple les nombres entiers relatifs, munis de la loi d'addition.
  • 수학에서 군(群)은 어떤 집합과 이항연산이 가질 수 있는 특정한 대수적 구조로, 그 이항연산이 닫혀 있고, 항등원, 역원이 존재하고, 결합법칙을 만족하는 구조이다.군이 추상화할 수 있는 대상은 다양하다. 정수나 실수 내에서의 덧셈 연산은 군의 정의를 만족하며, 어떤 도형을 회전하거나 대칭시키는 등의 동작 또한 군이 된다.
  • 数学における群(ぐん、group)とは最も基本的と見なされる代数的構造の一つである。群はそれ自体興味深い考察対象であり、群論における主要な研究対象となっているが、数学や物理学全般にわたってさまざまな構成に対する基礎的な枠組みを与えている。
  • Öbek (veya grup), soyut cebirin en temel matematiksel yapısıdır. Öbek, öncelikle bir kümedir, öğeleri boş olmayan bir küme ve üzerine tanımlı bir ikili işlemi olan bir kümedir. Öbek kuramı, bu işlemin özelliklerine göre öbekleri inceler. Soyut cebirin halka, cisim, modül gibi diğer yapılarının temelini oluşturur.
  • Grupa – jedna ze struktur algebraicznych: zbiór niepusty, na którym określono pewne łączne działanie dwuargumentowe wewnętrzne, dla którego istnieje element odwrotny do każdego elementu oraz element neutralny. Można powiedzieć, że grupą jest monoid, w którym każdy element ma element odwrotny. Dział matematyki badający własności grup nazywa się teorią grup.
  • Em matemática, um grupo é um conjunto de elementos associados a uma operação que combina dois elementos quaisquer para formar um terceiro. Para se qualificar como grupo o conjunto e a operação devem satisfazer algumas condições chamadas axiomas de grupo: associatividade, identidade e elementos inversos. Apesar destes serem comuns a muitas estruturas matemáticas familiares - e.g.
  • In der Mathematik ist eine Gruppe eine Menge von Elementen zusammen mit einer Verknüpfung, die je zwei Elementen der Menge ein drittes Element derselben Menge zuordnet und dabei drei Bedingungen, die Gruppenaxiome, erfüllt. Diese umfassen das Assoziativgesetz, die Existenz eines neutralen Elements und die Existenz von inversen Elementen. Eine der bekanntesten Gruppen ist die Menge der ganzen Zahlen mit der Addition als Verknüpfung.
  • In mathematics, a group is a set of elements together with an operation that combines any two of its elements to form a third element satisfying four conditions called the group axioms, namely closure, associativity, identity and invertibility. One of the most familiar examples of a group is the set of integers together with the addition operation; the addition of any two integers forms another integer.
  • In matematica, un gruppo è una struttura algebrica formata da un insieme non vuoto con un'operazione binaria interna (come ad esempio la somma o il prodotto) che soddisfa alcuni assiomi, cioè l'associatività, l'esistenza dell'elemento neutro e dell'inverso.Tali assiomi sono soddisfatti da numerose strutture algebriche, come ad esempio i numeri interi con l'operazione di addizione, ma essi sono molto più generali e prescindono dalla natura particolare del gruppo considerato.
  • En álgebra abstracta, un grupo es una estructura algebraica que consta de un conjunto con una operación que combina cualquier pareja de sus elementos para formar un tercer elemento. Para que se pueda calificar como un grupo, el conjunto y la operación deben satisfacer algunas condiciones llamadas axiomas de grupo, estas condiciones son: tener la propiedad asociativa, tener elemento identidad y elemento inverso.
  • In de groepentheorie, een deelgebied van de wiskunde, is een groep een bepaalde algebraïsche structuur. Een groep bestaat uit een verzameling V en een operatie, die altijd op twee elementen van V werkt. Deze operatie is dus een binaire operatie. Groepen voldoen aan een aantal voorwaarden of axioma's. Er zijn vier groepsaxioma's: de operatie is gesloten, de operatie is associatief, er is in de groep een element de identiteit en ieder element in de groep heeft een invertibiliteit.
  • Dalam matematika, grup adalah suatu himpunan, beserta satu operasi biner, seperti perkalian atau penjumlahan, yang memenuhi beberapa aksioma yang diuraikan di bawah ini. Misalnya, himpunan bilangan bulat adalah suatu grup terhadap operasi penjumlahan. Cabang matematika yang mempelajari grup disebut teori grup. Asal-usul teori grup berawal dari kerja Evariste Galois (1830), yang berkaitan dengan masalah persamaan aljabar yang terpecahkan dengan radikal.
  • Grupa je v matematice algebraická struktura, která popisuje a formalizuje koncept symetrie. Formálně se zavádí jako množina spolu s binární operací splňující níže uvedené axiomy. Matematická disciplína zabývající se studiem grup se nazývá teorie grup. Příklady grup jsou celá čísla s operací sčítání, nenulová racionální čísla s operací násobení, symetrie pravidelných geometrických útvarů, množiny regulárních matic a automorfismy různých algebraických struktur.Teorie grup vznikla počátkem 19.
  • Un grup és una estructura algebraica formada per un conjunt G d'elements on hi ha definida una operació binària, com pot ser la suma o el producte, i que compleix unes propietats determinades que detallem més endavant.Molts objectes estudiats en matemàtiques tenen estructura de grup. Entre aquests trobem els nombres enters, els racionals, els reals i els complexos amb l'operació de la suma, així com els racionals, reals i complexos sense el zero amb l'operació del producte.
  • Тази статия се отнася до групите в математиката. За други значения на понятието виж пояснителната страница.Група е вид алгебрична структура, която представлява едно от най-основните понятия в математиката. Една група се състои грубо казано от трансформациите на даден обект. Например множеството от ротации на един правилен n-ъгълник е група с n елемента. Пример за по-сложна група е множеството от трансформациите на куба на Рубик.
  • Гру́ппа в математике — множество элементов с определённой на нём ассоциативной бинарной операцией, унарной операцией взятия обратного элемента и выделенным нейтральным элементом, связанное некоторыми естественными свойствами — групповыми аксиомами[⇨].
rdfs:label
  • Groupe (mathématiques)
  • Csoport
  • Groep (wiskunde)
  • Group (mathematics)
  • Grup (matematika)
  • Grup (matemàtiques)
  • Grupa
  • Grupa (matematyka)
  • Grupo (matemática)
  • Grupo (matemática)
  • Gruppe (Mathematik)
  • Gruppo (matematica)
  • Öbek (matematik)
  • Група (алгебра)
  • Группа (математика)
  • 群 (数学)
  • 군 (수학)
owl:sameAs
http://www.w3.org/ns/prov#wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbpedia-owl:knownFor of
is dbpedia-owl:wikiPageDisambiguates of
is dbpedia-owl:wikiPageRedirects of
is dbpedia-owl:wikiPageWikiLink of
is prop-fr:champs of
is foaf:primaryTopic of