La géométrie euclidienne commence avec les Éléments d'Euclide, qui est à la fois une somme des connaissances géométriques de l'époque et une tentative de formalisation mathématique de ces connaissances. Les notions de droite, de plan, de longueur, d'aire y sont exposées et forment le support des cours de géométrie élémentaire.

PropertyValue
dbpedia-owl:abstract
  • La géométrie euclidienne commence avec les Éléments d'Euclide, qui est à la fois une somme des connaissances géométriques de l'époque et une tentative de formalisation mathématique de ces connaissances. Les notions de droite, de plan, de longueur, d'aire y sont exposées et forment le support des cours de géométrie élémentaire. La conception de la géométrie est intimement liée à la vision de l'espace physique ambiant au sens classique du terme.Les conceptions géométriques connaissent, depuis les travaux d'Euclide, des évolutions suivant trois axes principaux : Pour vérifier les critères de rigueur logique actuels, la définition axiomatique subit de profonds changements, l'objet mathématique restant néanmoins le même. Pour ne plus se limiter aux dimensions deux et trois et pour permettre l'élaboration d'une théorie plus puissante, un modèle algébrique de la géométrie est envisagé. L'espace euclidien est maintenant défini comme un espace vectoriel ou affine réel de dimension finie muni d'un produit scalaire. Enfin, la structure géométrique euclidienne n'est plus la seule envisageable ; il est établi qu'il existe d'autres géométries cohérentes.Plus de 2 000 ans après sa naissance, l'espace géométrique euclidien est un outil toujours efficace aux vastes domaines d'applications. Par exemple, l'espace des physiciens reste encore principalement du domaine de la géométrie euclidienne, l'astronomie étant l'exception la plus notoire.Son aspect mathématique est traité de manière didactique dans l'article produit scalaire. L'article se fonde sur la formalisation d'un vecteur à l'aide d'un bipoint, développé dans vecteur. Une approche plus poussée, fondée sur la formalisation axiomatique de l'espace vectoriel est développée dans espace euclidien.
  • ユークリッド幾何学(ユークリッドきかがく、英語:Euclidean geometry)は、幾何学体系の一つであり、古代エジプトのギリシア系哲学者エウクレイデスの著書『原論』に由来する。古代エジプトや古代ギリシャなどでは盛んに幾何学が研究されていた。エウクレイデスはその成果を『原論』の1~4巻において体系化した。その手法は まず、点や線などの基礎的な概念に対する定義を与える 次に、一連の公理を述べ、公理系を確立する そして、それらの上に500あまりの定理を証明する。という現代数学に近い形式をとっており、完成されたものであったので、それ以降の多くの幾何学者はこの体系の上に研究を進めた。ヨーロッパでは重要な教養の一つと考えられていたものである。こうして基礎づけられ発展した体系は、エウクレイデス(英名:Euclid ユークリッド)に因んでユークリッド幾何学と呼ばれるようになった。現代的観点からは公理系に若干の不備もあり、ヒルベルトがより厳密に体系化している。(en:Hilbert's axioms)ユークリッド幾何学は、いうなれば直感的に納得できる空間の在り方に基づく幾何学である。直線はどこまでも伸ばせるはずであるし、平面は本来はどこまでも果てのないものが想像できるし、どこまでも平らな面があるはずであった。また、平行線はどこまでも平行に伸びることが想定された。それは、現実世界の在り方として、当然そうであると言う前提であった。ユークリッド幾何学は永くにわたって「唯一の幾何学」であったが、『原論』の第5公準(平行線公準)に対する疑問から始まった研究の流れはついに19世紀に非ユークリッド幾何学を生んだ。ユークリッド幾何学と非ユークリッド幾何学は一方が正しく他方が間違っているというような性質のものではなく、単に独立した別個のものである。平面や歪みのない空間の図形の性質を探求するのがユークリッド幾何学であり、曲面や歪んだ空間の図形を探求するのが非ユークリッド幾何学である。
  • Euclidean geometry is a mathematical system attributed to the Alexandrian Greek mathematician Euclid, which he described in his textbook on geometry: the Elements. Euclid's method consists in assuming a small set of intuitively appealing axioms, and deducing many other propositions (theorems) from these. Although many of Euclid's results had been stated by earlier mathematicians, Euclid was the first to show how these propositions could fit into a comprehensive deductive and logical system. The Elements begins with plane geometry, still taught in secondary school as the first axiomatic system and the first examples of formal proof. It goes on to the solid geometry of three dimensions. Much of the Elements states results of what are now called algebra and number theory, explained in geometrical language.For more than two thousand years, the adjective "Euclidean" was unnecessary because no other sort of geometry had been conceived. Euclid's axioms seemed so intuitively obvious (with the possible exception of the parallel postulate) that any theorem proved from them was deemed true in an absolute, often metaphysical, sense. Today, however, many other self-consistent non-Euclidean geometries are known, the first ones having been discovered in the early 19th century. An implication of Einstein's theory of general relativity is that physical space itself is not Euclidean, and Euclidean space is a good approximation for it only where the gravitational field is weak.
  • De euclidische meetkunde is een wiskundig systeem dat wordt toegeschreven aan de Griekse wiskundige Euclides van Alexandrië. Zijn werk, de Elementen, is de vroegst bekende systematische bespreking van de meetkunde. De Elementen is een van de meest invloedrijke boeken uit de geschiedenis, niet alleen om de wiskundige inhoud, maar vooral vanwege de gehanteerde methode. Deze methode bestaat eruit om uitgaande van een kleine verzameling van intuïtief aansprekende axioma's, vervolgens vele andere proposities, lemma's en stellingen te bewijzen. Hoewel veel van Euclides' resultaten reeds eerder door vroegere Griekse wiskundigen waren geformuleerd, was Euclides de eerste die liet zien hoe deze proposities in elkaar grijpen in een alomvattend deductief en logisch systeem.De Euclidische meetkunde is de meetkunde van ruimte, die niet gekromd is. Eerste voorbeeld van een ruimte, die wel gekromd is, is de oppervlak van een bol. Belangrijke begrippen in de Euclidische meetkunde zijn onder andere de punt, lijn, lijnstuk, kant van de lijn, cirkel met straal en middelpunt, rechte hoek en congruentie. Deze begrippen kennen we, het zijn de begrippen waar het onderwijs in de wiskunde mee begint. We hebben ook een intuïtief beeld van de Euclidische meetkunde, maar voor een exacte beschrijving ervan zijn de vijf postulaten van Euclides nodig. Als eerste axiomatisch systeem begint de Elementen met de meetkunde op een vlak en gebruikt daarbij bovengenoemde begrippen. Hier vindt men ook de eerste voorbeelden van formele bewijzen. De Elementen gaat vervolgens verder met meetkunde van de drie-dimensionale ruimte, de stereometrie. Vooral in de 19e eeuw is de euclidische meetkunde uitgebreid naar elk eindig aantal dimensies. Vooral de leerboeken van de planimetrie en de stereometrie liggen ten grondslag aan de elementaire mechanica en natuurkunde.Veel van de Elementen bestaat uit resultaten uit wat men tegenwoordig de getaltheorie noemen. Deze resultaten worden in de Elementen echter bewezen met behulp van meetkundige methoden.Meer dan tweeduizend jaar was het bijvoeglijk naamwoord "euclidisch" overbodig, omdat de euclidische meetkunde de enige bekende vorm van meetkunde was. Euclides' axioma's, met uitzondering van de vijfde, leken zo intuïtief duidelijk dat stellingen, die op basis van deze axioma's werden bewezen door velen in absolute zin als waar beschouwd werden. Vandaag de dag zijn er echter vele andere consistente niet-euclidische meetkundes bekend. De eersten daarvan werden in het begin van de 19e eeuw ontdekt. De niet-euclidische meetkundes hebben vier van de vijf axioma's met de euclidische meetkunde gemeen. Alleen het vijfde, het axioma van de evenwijdige lijnen, volgens welk door een punt P buiten een lijn m slechts één lijn evenwijdig met m loopt, gaat in de niet-euclidische meetkundes niet op. De gewone euclidische meetkunde is te beschouwen als overgangsgeval tussen de elliptische en de hyperbolische meetkunde en wordt om die reden soms ook wel parabolische meetkunde genoemd.Tegenwoordig wordt het niet langer vanzelfsprekend beschouwd dat de euclidische meetkunde de natuurkundige ruimte, het heelal, beschrijft. Een implicatie van Einsteins algemene relativiteitstheorie is dat de euclidische meetkunde alleen een goede benadering van de eigenschappen van het heelal vormt als het zwaartekrachtsveld niet te sterk is.
  • A görög tudósok az egyiptomi geométerek – földmérők – tapasztalatainak rendszerezésével olyan tudományt alkottak, amelyet ma geometriának nevezünk. Az Eukleidész munkájában (Elemek) ránk hagyományozott rendszer kétezer évig a világnézet egyik pillérének számított: feltételeztük, hogy az univerzum tapasztalati tere pontosan olyan szerkezetű, mint az euklideszi elmélet által leírt absztrakt tér. A rá épülő geometriát nevezzük euklideszi geometriának.
  • Geometria euklidesowa – klasyczna odmiana geometrii opisana po raz pierwszy przez Euklidesa w dziele Elementy (z III w. p.n.e.). Zebrał on całą ówczesną wiedzę matematyczną znaną Grekom, dziś jego dzieło przedstawia się jako pierwszą znaną aksjomatyzację w historii matematyki. Pierwotnie uprawiano ją jedynie na płaszczyźnie i w przestrzeni trójwymiarowej wiążąc ją jednocześnie ze światem fizycznym, który miała opisywać, nie dopuszczając tym samym możliwości badania innych odmian geometrii.Podejście Euklidesa zaowocowało nietypowym przejawem kultury matematycznej starożytnych Greków – twierdzenia geometryczne chętnie dowodzili oni za pomocą cyrkla i liniału, czyli kreśląc okręgi i proste. Ograniczenia te nazywa się dziś konstrukcjami klasycznymi. W 1833 r. udowodniono, że wszystkie takie konstrukcje można wykonać także przy pomocy samych prostych, o ile tylko dany jest na płaszczyźnie pewien okrąg wraz ze środkiem. (twierdzenie Ponceleta-Steinera); co więcej można je wykonać za pomocą samego cyrkla (twierdzenie Mohra-Mascheroniego).
  • La geometria euclidiana és la part de la geometria que estudia els objectes o figures i les seves relacions en un espai on es compleixen els cinc postulats d'Euclides i les cinc nocions comunes.Aquests postulats i nocions comunes varen ser recollides en un tractat de geometria escrit per Euclides d'Alexandria que constava de tretze llibres i que es deia els Elements.La característica fonamental de la geometria euclidiana és, pel cas del pla, l'existència i unicitat d'una recta paral·lela a un recta donada que passi per un punt determinat exterior a la recta. Per a dimensions superiors es poden enunciar proposicions anàlogues.
  • La geometría euclidiana, euclídea o parabólica es el estudio de las propiedades geométricas de los espacios euclídeos. Es aquella que estudia las propiedades geométricas del plano afín euclídeo real y del espacio afín euclídeo tridimensional real mediante el método sintético, introduciendo los cinco postulados de Euclides.También es común (abusando del lenguaje) decir que una geometría es euclidiana si no es no euclidiana, es decir, si en dicha geometría se verifica el quinto postulado de Euclides. Ésta denominación está cada vez más en desuso, debido a la pérdida de interés que va teniendo el tema de la posibilidad de trazar paralelas a una recta desde un punto exterior a la misma.En ocasiones los matemáticos usan las expresiones geometría euclídea o geometría euclidiana para englobar geometrías de dimensiones superiores con propiedades similares. Sin embargo, con frecuencia son sinónimos de geometría plana o de geometría clásica.
  • Eukleidovská (někdy také elementární nebo Eukleidova) geometrie je založena na definicích a axiomech, které publikoval Eukleidés v díle Základy (lat. Elementa).Eukleidés se v Základech věnuje nejen geometrii, ale také měření a teorii čísel. Geometrie však byla jeho axiomatickým přístupem ovlivněna pravděpodobně nejvíce, proto dnes bývá Eukleidés spojován především s rozvojem geometrie. Dílo se skládá celkem ze 13 knih. Knihy I-VI jsou věnovány rovinné geometrii, knihy VII-IX jsou aritmetické a část jejich výsledku je aplikována na studium iracionalit v knize X. Knihy XI-XIII se zabývájí prostorovou geometrií neboli stereometrií. Na začátku každé knihy jsou uvedeny definice (výměry) užívaných pojmů.
  • Die euklidische Geometrie ist zunächst die uns vertraute, anschauliche Geometrie der Ebene oder des dreidimensionalen Raums. Der Begriff hat jedoch sehr verschiedene Aspekte und lässt Verallgemeinerungen zu. Benannt ist dieses mathematische Teilgebiet der Geometrie nach dem griechischen Mathematiker Euklid von Alexandria.
  • Евкли́дова геоме́трия (или элементарная геометрия) — геометрическая теория, основанная на системе аксиом, впервые изложенной в «Началах» Евклида (III век до н. э.).
  • Euklidesen axiomak Euklidesen Elementuak lanan agertzen diren bost axiomak dira: Bi puntu emanda, beraiek batzen dituen zuzen bat eraiki daiteke. Edozein zuzen luzatua izan daiteke infinitorarte norabide berean hedatu daitekeen zuzen bat eratuz. Edozein puntu eta erradioa hartuta zirkunferentzia bakarra era daiteke. Angelu zuzen guztiak berdinak dira. Zuzen batek beste bi mozten dituenean bi zuzen baino txikiagoak diren angeluak sortzen baditu, zuzen horiek muga gabe hedatzen baditugu bi angelu txikiago horiek dauden lekutik moztuko dira.
  • Geometri Euklides adalah sebuah geometri klasik, terdiri atas 5 postulat, yang dinisbahkan terhadap matematikawan Yunani Kuno Euklides. Geometri Euklides merupakan sistem aksiomatik, di mana semua teorema ("pernyataan yang benar") diturunkan dari bilangan aksioma yang terbatas. Mendekati buku awalnya Elemen, Euklides memberikan 5 postulat: Setiap 2 titik dapat digabungkan oleh 1 garis lurus. Setiap garis lurus dapat diperpanjang sampai tak terhingga dengan garis lurus. Diberikan setiap segmen garis lurus, sebuah lingkaran dapat digambar memiliki segmen ini sebagai jari-jari dan 1 titik ujung sebagai pusat. Semua sudut di kanan itu kongruen. Postulat paralel. Jika 2 garis bertemu di sepertiga jalan di mana jumlah sudut dalam di 1 sisi kurang dari 2 sudut yang di kanan, kedua garis itu harus bertemu satu sama lain di sisi itu jika diperpanjang lebih jauh lagi.Postulat yang ke-5 membuka jalan bagi geometri yang sama seperti pernyataan berikut, dikenal sebagai aksioma Playfair, yang terjadi di bidang datar:"Melalui sebuah titik yang bukan pada garis lurus yang diberikan, hanya satu garis saja yang dapat ditarik dan tak pernah bertemu garis yang diberikan."
  • Öklidci geometri, Yunan matematikçi Öklid tarafından ortaya atılan bir geometri sınıfıdır.Öklid'in beş aksiyomu şunlardır: İki noktadan bir ve yalnız bir doğru geçer. Bir doğru parçası iki yöne de sınırsız bir şekilde uzatılabilir. Merkezi ve üzerinde bir noktası verilen bir çember çizilebilir. Bütün dik açılar eşittir. Bir doğruya dışında alınan bir noktadan bir ve yalnız bir paralel çizilebilir.
  • Na matemática, geometria euclidiana é a geometria, em duas e três dimensões, baseada nos postulados de Euclides de Alexandria. O texto de "Os elementos" foi a primeira discussão sistemática sobre a geometria e o primeiro texto a falar sobre teoria dos números. Foi também um dos livros mais influentes na história, tanto pelo seu método quanto pelo seu conteúdo matemático. O método consiste em assumir um pequeno conjunto de axiomas intuitivos e, então, provar várias outras proposições (teoremas) a partir desses axiomas. Muitos dos resultados de Euclides já haviam sido afirmados por matemáticos gregos anteriores, porém ele foi o primeiro a demonstrar como essas proposições poderiam ser reunidas juntas em um abrangente sistema dedutivo.Embora se tenham perdido mais de metade dos seus livros, ainda restaram, para felicidade dos séculos vindouros, os treze famosos livros que constituem os Elementos , ou Stoicheia, que foram publicados por volta de 300 a. C., contemplando a aritmética, a geometria e a álgebra.Em matemática, linhas retas, ou planos que permanecem sempre a uma distância fixa uns dos outros independentemente do seu comprimento. Este é um princípio da geometria euclidiana. Algumas geometrias não euclidianas, como a geometria elíptica e hiperbólica, no entanto, rejeitam o axioma do paralelismo euclidiano.Os postulados de Euclides são: Dados dois pontos distintos, há um único segmento de reta que os une; Um segmento de reta pode ser prolongado indefinidamente para construir uma reta; Dados um ponto qualquer e uma distância qualquer, pode-se construir uma circunferência de centro naquele ponto e com raio igual à distância dada; Todos os ângulos retos são congruentes (semelhantes); O "Postulado de Euclides": "Se uma linha reta cai em duas linhas retas de forma a que os dois ângulos internos de um mesmo lado sejam (em conjunto, ou soma) menores que dois ângulos retos, então as duas linhas retas, se forem prolongadas indefinidamente, encontram-se num ponto no mesmo lado em que os dois ângulos são menores que dois ângulos retos." Paralelismo de Euclides. "Há um ponto P e uma reta r não incidentes tais que no plano que definem não há mais do que uma reta incidente com P e paralela a r."
  • La geometria euclidea è la geometria che si basa sui cinque postulati di Euclide e in particolar modo sul postulato delle parallele.Le geometrie che si basano su postulati diversi da quelli elencati da Euclide sono dette geometrie non euclidee. I 5 postulati di Euclide sono: Tra due punti qualsiasi è possibile tracciare una ed una sola retta; Si può prolungare un segmento oltre i due punti indefinitamente; Dato un punto e una lunghezza, è possibile descrivere un cerchio; Tutti gli angoli retti sono uguali; Se una retta che taglia altre due rette determina dallo stesso lato di ciascuna retta angoli interni minori di due angoli retti, prolungando le due rette, esse si incontreranno dalla parte dove i due angoli sono minori di due retti.Si nota subito una differenza tra i primi quattro, immediatamente evidenti e praticamente verificabili col semplice uso di matita, righello e compasso, ed il quinto, che non è caratterizzato dall'immediatezza pratica dei primi, mentre presenta una formulazione molto più involuta. Lo stesso matematico sembra essere a disagio in proposito, tanto che dimostra le prime 28 proposizioni del primo libro degli Elementi senza farne uso.Essendo meno generica tuttavia è senz'altro più familiare la forma moderna del postulato:Per un punto passa una ed una sola parallela ad una retta data.Sulla violazione di questi postulati, e soprattutto sul quinto, si fondano le geometrie non-euclidee come ad esempio la geometria iperbolica.
  • 유클리드 기하학(-幾何學, Euclidean geometry)은 그리스의 수학자 유클리드가 구축한 수학 체계로, 그의 《원론》은 기하학에 관한 최초의 체계적인 논의로 알려져 있다. 유클리드의 방법은 직관적으로 인지되는 공리를 참으로 간주함에 바탕을 두며, 그것들로부터 연역적으로 명제 (정리)를 이끌어낸다. 유클리드가 이끌어낸 많은 성과는 일찍이 오래전의 수학자들에게 알려져 있었던 것이나, 유클리드는 포괄적인 추론과 논리를 통해 그 명제들이 왜 성립할 수 있는가를 보인 최초의 인물이다. 그의 《원론》은 평면 기하학과 함께 시작되며, 아직도 중등 수학교육에서는 최초의 공리계이자 최초의 정형화된 증명의 예로서 가르쳐지고 있다. 이는 3차원에서의 공간 기하학으로 계속해서 이어진다. 현재 대수학과 정수론으로 불리는 《원론》의 많은 결론들은 기하학적 언어로 표현되어 있다.유클리드 기하학이 아닌 다른 종류의 기하학은 한 번도 생각된 적이 없었기 때문에 2천년 동안 "유클리드"라는 수식어는 필요하지 않았다. 유클리드의 공리는 어떤 정리도 유도해 낼 수 있을 만큼 직관적으로 매우 명백한 것으로 보였고, 절대적인 의미에서 참으로 간주되었다. 그러나 오늘날에는 자기 모순이 없는 많은 다른 비유클리드 기하학이 알려져 있고, 19세기 초에 그 중 최초가 개발되었다. 유클리드 공간은 중력장이 거의 작용하지 않는 공간에서만 실제 세계와 잘 들어맞는 근사적인 이론이라는 것이 아인슈타인의 일반 상대성이론에 함축되어 있다.
dbpedia-owl:thumbnail
dbpedia-owl:wikiPageExternalLink
dbpedia-owl:wikiPageID
  • 50229 (xsd:integer)
dbpedia-owl:wikiPageLength
  • 50835 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 281 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 109629586 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
prop-fr:date
  • 2008-01-16 (xsd:date)
prop-fr:oldid
  • 24825960 (xsd:integer)
prop-fr:vote
  • BA
prop-fr:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • La géométrie euclidienne commence avec les Éléments d'Euclide, qui est à la fois une somme des connaissances géométriques de l'époque et une tentative de formalisation mathématique de ces connaissances. Les notions de droite, de plan, de longueur, d'aire y sont exposées et forment le support des cours de géométrie élémentaire.
  • ユークリッド幾何学(ユークリッドきかがく、英語:Euclidean geometry)は、幾何学体系の一つであり、古代エジプトのギリシア系哲学者エウクレイデスの著書『原論』に由来する。古代エジプトや古代ギリシャなどでは盛んに幾何学が研究されていた。エウクレイデスはその成果を『原論』の1~4巻において体系化した。その手法は まず、点や線などの基礎的な概念に対する定義を与える 次に、一連の公理を述べ、公理系を確立する そして、それらの上に500あまりの定理を証明する。という現代数学に近い形式をとっており、完成されたものであったので、それ以降の多くの幾何学者はこの体系の上に研究を進めた。ヨーロッパでは重要な教養の一つと考えられていたものである。こうして基礎づけられ発展した体系は、エウクレイデス(英名:Euclid ユークリッド)に因んでユークリッド幾何学と呼ばれるようになった。現代的観点からは公理系に若干の不備もあり、ヒルベルトがより厳密に体系化している。(en:Hilbert's axioms)ユークリッド幾何学は、いうなれば直感的に納得できる空間の在り方に基づく幾何学である。直線はどこまでも伸ばせるはずであるし、平面は本来はどこまでも果てのないものが想像できるし、どこまでも平らな面があるはずであった。また、平行線はどこまでも平行に伸びることが想定された。それは、現実世界の在り方として、当然そうであると言う前提であった。ユークリッド幾何学は永くにわたって「唯一の幾何学」であったが、『原論』の第5公準(平行線公準)に対する疑問から始まった研究の流れはついに19世紀に非ユークリッド幾何学を生んだ。ユークリッド幾何学と非ユークリッド幾何学は一方が正しく他方が間違っているというような性質のものではなく、単に独立した別個のものである。平面や歪みのない空間の図形の性質を探求するのがユークリッド幾何学であり、曲面や歪んだ空間の図形を探求するのが非ユークリッド幾何学である。
  • A görög tudósok az egyiptomi geométerek – földmérők – tapasztalatainak rendszerezésével olyan tudományt alkottak, amelyet ma geometriának nevezünk. Az Eukleidész munkájában (Elemek) ránk hagyományozott rendszer kétezer évig a világnézet egyik pillérének számított: feltételeztük, hogy az univerzum tapasztalati tere pontosan olyan szerkezetű, mint az euklideszi elmélet által leírt absztrakt tér. A rá épülő geometriát nevezzük euklideszi geometriának.
  • Die euklidische Geometrie ist zunächst die uns vertraute, anschauliche Geometrie der Ebene oder des dreidimensionalen Raums. Der Begriff hat jedoch sehr verschiedene Aspekte und lässt Verallgemeinerungen zu. Benannt ist dieses mathematische Teilgebiet der Geometrie nach dem griechischen Mathematiker Euklid von Alexandria.
  • Евкли́дова геоме́трия (или элементарная геометрия) — геометрическая теория, основанная на системе аксиом, впервые изложенной в «Началах» Евклида (III век до н. э.).
  • Öklidci geometri, Yunan matematikçi Öklid tarafından ortaya atılan bir geometri sınıfıdır.Öklid'in beş aksiyomu şunlardır: İki noktadan bir ve yalnız bir doğru geçer. Bir doğru parçası iki yöne de sınırsız bir şekilde uzatılabilir. Merkezi ve üzerinde bir noktası verilen bir çember çizilebilir. Bütün dik açılar eşittir. Bir doğruya dışında alınan bir noktadan bir ve yalnız bir paralel çizilebilir.
  • Geometri Euklides adalah sebuah geometri klasik, terdiri atas 5 postulat, yang dinisbahkan terhadap matematikawan Yunani Kuno Euklides. Geometri Euklides merupakan sistem aksiomatik, di mana semua teorema ("pernyataan yang benar") diturunkan dari bilangan aksioma yang terbatas. Mendekati buku awalnya Elemen, Euklides memberikan 5 postulat: Setiap 2 titik dapat digabungkan oleh 1 garis lurus. Setiap garis lurus dapat diperpanjang sampai tak terhingga dengan garis lurus.
  • La geometria euclidea è la geometria che si basa sui cinque postulati di Euclide e in particolar modo sul postulato delle parallele.Le geometrie che si basano su postulati diversi da quelli elencati da Euclide sono dette geometrie non euclidee.
  • Na matemática, geometria euclidiana é a geometria, em duas e três dimensões, baseada nos postulados de Euclides de Alexandria. O texto de "Os elementos" foi a primeira discussão sistemática sobre a geometria e o primeiro texto a falar sobre teoria dos números. Foi também um dos livros mais influentes na história, tanto pelo seu método quanto pelo seu conteúdo matemático.
  • Geometria euklidesowa – klasyczna odmiana geometrii opisana po raz pierwszy przez Euklidesa w dziele Elementy (z III w. p.n.e.). Zebrał on całą ówczesną wiedzę matematyczną znaną Grekom, dziś jego dzieło przedstawia się jako pierwszą znaną aksjomatyzację w historii matematyki.
  • Euklidesen axiomak Euklidesen Elementuak lanan agertzen diren bost axiomak dira: Bi puntu emanda, beraiek batzen dituen zuzen bat eraiki daiteke. Edozein zuzen luzatua izan daiteke infinitorarte norabide berean hedatu daitekeen zuzen bat eratuz. Edozein puntu eta erradioa hartuta zirkunferentzia bakarra era daiteke. Angelu zuzen guztiak berdinak dira.
  • La geometria euclidiana és la part de la geometria que estudia els objectes o figures i les seves relacions en un espai on es compleixen els cinc postulats d'Euclides i les cinc nocions comunes.Aquests postulats i nocions comunes varen ser recollides en un tractat de geometria escrit per Euclides d'Alexandria que constava de tretze llibres i que es deia els Elements.La característica fonamental de la geometria euclidiana és, pel cas del pla, l'existència i unicitat d'una recta paral·lela a un recta donada que passi per un punt determinat exterior a la recta.
  • 유클리드 기하학(-幾何學, Euclidean geometry)은 그리스의 수학자 유클리드가 구축한 수학 체계로, 그의 《원론》은 기하학에 관한 최초의 체계적인 논의로 알려져 있다. 유클리드의 방법은 직관적으로 인지되는 공리를 참으로 간주함에 바탕을 두며, 그것들로부터 연역적으로 명제 (정리)를 이끌어낸다. 유클리드가 이끌어낸 많은 성과는 일찍이 오래전의 수학자들에게 알려져 있었던 것이나, 유클리드는 포괄적인 추론과 논리를 통해 그 명제들이 왜 성립할 수 있는가를 보인 최초의 인물이다. 그의 《원론》은 평면 기하학과 함께 시작되며, 아직도 중등 수학교육에서는 최초의 공리계이자 최초의 정형화된 증명의 예로서 가르쳐지고 있다. 이는 3차원에서의 공간 기하학으로 계속해서 이어진다.
  • Eukleidovská (někdy také elementární nebo Eukleidova) geometrie je založena na definicích a axiomech, které publikoval Eukleidés v díle Základy (lat. Elementa).Eukleidés se v Základech věnuje nejen geometrii, ale také měření a teorii čísel. Geometrie však byla jeho axiomatickým přístupem ovlivněna pravděpodobně nejvíce, proto dnes bývá Eukleidés spojován především s rozvojem geometrie. Dílo se skládá celkem ze 13 knih.
  • Геометрията на Евклид е математическа система, разработена в Египет от древногръцкия математик Евклид от Александрия. Неговото съчинение „Елементи“ е най-ранният завършен системен текст относно геометрията, превърнал се в една от най-влиятелните книги в историята на човечеството.Евклид въвежда малък брой аксиоми и въз основа на тях доказва много други твърдения (теореми).
  • Euclidean geometry is a mathematical system attributed to the Alexandrian Greek mathematician Euclid, which he described in his textbook on geometry: the Elements. Euclid's method consists in assuming a small set of intuitively appealing axioms, and deducing many other propositions (theorems) from these. Although many of Euclid's results had been stated by earlier mathematicians, Euclid was the first to show how these propositions could fit into a comprehensive deductive and logical system.
  • La geometría euclidiana, euclídea o parabólica es el estudio de las propiedades geométricas de los espacios euclídeos.
  • De euclidische meetkunde is een wiskundig systeem dat wordt toegeschreven aan de Griekse wiskundige Euclides van Alexandrië. Zijn werk, de Elementen, is de vroegst bekende systematische bespreking van de meetkunde. De Elementen is een van de meest invloedrijke boeken uit de geschiedenis, niet alleen om de wiskundige inhoud, maar vooral vanwege de gehanteerde methode.
rdfs:label
  • Géométrie euclidienne
  • Euclidean geometry
  • Euclidische meetkunde
  • Eukleidovská geometrie
  • Euklidesen axiomak
  • Euklideszi geometria
  • Euklidische Geometrie
  • Geometri Euklides
  • Geometria euclidea
  • Geometria euclidiana
  • Geometria euclidiana
  • Geometria euklidesowa
  • Geometría euclidiana
  • Öklidci geometri
  • Евклидова геометрия
  • Евклидова геометрия
  • ユークリッド幾何学
  • 유클리드 기하학
owl:sameAs
http://www.w3.org/ns/prov#wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbpedia-owl:knownFor of
is dbpedia-owl:wikiPageRedirects of
is dbpedia-owl:wikiPageWikiLink of
is prop-fr:renomméPour of
is skos:subject of
is foaf:primaryTopic of