La fission nucléaire est le phénomène par lequel le noyau d'un atome lourd (noyau qui contient beaucoup de nucléons, tels les noyaux d'uranium et de plutonium) est divisé en plusieurs nucléides plus légers, généralement deux nucléides.

PropertyValue
dbpedia-owl:abstract
  • La fission nucléaire est le phénomène par lequel le noyau d'un atome lourd (noyau qui contient beaucoup de nucléons, tels les noyaux d'uranium et de plutonium) est divisé en plusieurs nucléides plus légers, généralement deux nucléides. Cette réaction nucléaire se traduit aussi par l'émission de neutrons (en général deux ou trois) et un dégagement d'énergie très important (≈ 200 MeV par atome fissionné, à comparer aux énergies des réactions chimiques qui sont de l'ordre de l'eV par atome ou molécule réagissant).
  • Kernspaltung (englisch nuclear fission) bezeichnet einen Prozess der Kernphysik, bei dem ein Atomkern unter Energiefreisetzung in zwei oder mehr Bestandteile zerlegt wird. Seltener wird die Kernspaltung auch als Kernfission (lateinisch fissio ‚das Spalten‘) bezeichnet – ein Begriff, der nicht mit Kernfusion, dem Verschmelzen zweier Atomkerne, verwechselt werden darf. Die durch die Spaltung neu entstandenen Stoffe heißen Spaltprodukte.
  • Ядрено делене в ядрената физика и ядрената химия е вид ядрена реакция, при която тежки атомни ядра се разпадат на по-леки такива със сравними маси. Най-често наблюдавано е разпадането на 2 по-леки ядра, но не е изключено разпадането на 3 или 4 ядра със сравними маси. Процесът може да е съпроводен също така с излъчването на неутрони, алфа частици, гама лъчи и голямо количество енергия. Това е екзотермична реакция при която се освобождават огромни количества енергия във формата на електромагнитно излъчване или кинетична енергия. Това се използва в ядрените реактори и за направата на ядрено оръжие. Количеството свободна енергия в ядреното гориво е милиони пъти по-голямо от количеството свободна енергия в подобна по големина маса химическо гориво (като бензин).Ядреното делене бива принудено - под действието на неутрони, тежки йони, гама-кванти и някои други частици, както и спонтанно.
  • In nuclear physics and nuclear chemistry, nuclear fission is either a nuclear reaction or a radioactive decay process in which the nucleus of an atom splits into smaller parts (lighter nuclei). The fission process often produces free neutrons and photons (in the form of gamma rays), and releases a very large amount of energy even by the energetic standards of radioactive decay.Nuclear fission of heavy elements was discovered on December 17, 1938 by Otto Hahn and his assistant Fritz Strassmann, and explained theoretically in January 1939 by Lise Meitner and her nephew Otto Robert Frisch. Frisch named the process by analogy with biological fission of living cells. It is an exothermic reaction which can release large amounts of energy both as electromagnetic radiation and as kinetic energy of the fragments (heating the bulk material where fission takes place). In order for fission to produce energy, the total binding energy of the resulting elements must be greater than that of the starting element.Fission is a form of nuclear transmutation because the resulting fragments are not the same element as the original atom. The two nuclei produced are most often of comparable but slightly different sizes, typically with a mass ratio of products of about 3 to 2, for common fissile isotopes. Most fissions are binary fissions (producing two charged fragments), but occasionally (2 to 4 times per 1000 events), three positively charged fragments are produced, in a ternary fission. The smallest of these fragments in ternary processes ranges in size from a proton to an argon nucleus.Fission as encountered in the modern world is usually a deliberately produced man-made nuclear reaction induced by a neutron. It is less commonly encountered as a natural form of spontaneous radioactive decay (not requiring a neutron), occurring especially in very high-mass-number isotopes. The unpredictable composition of the products (which vary in a broad probabilistic and somewhat chaotic manner) distinguishes fission from purely quantum-tunnelling processes such as proton emission, alpha decay and cluster decay, which give the same products each time. Nuclear fission produces energy for nuclear power and drives the explosion of nuclear weapons. Both uses are possible because certain substances called nuclear fuels undergo fission when struck by fission neutrons, and in turn emit neutrons when they break apart. This makes possible a self-sustaining nuclear chain reaction that releases energy at a controlled rate in a nuclear reactor or at a very rapid uncontrolled rate in a nuclear weapon.The amount of free energy contained in nuclear fuel is millions of times the amount of free energy contained in a similar mass of chemical fuel such as gasoline, making nuclear fission a very dense source of energy. The products of nuclear fission, however, are on average far more radioactive than the heavy elements which are normally fissioned as fuel, and remain so for significant amounts of time, giving rise to a nuclear waste problem. Concerns over nuclear waste accumulation and over the destructive potential of nuclear weapons may counterbalance the desirable qualities of fission as an energy source, and give rise to ongoing political debate over nuclear power.
  • In fisica nucleare la fissione nucleare è una reazione nucleare in cui il nucleo di un elemento pesante - ad esempio uranio-235 o plutonio 239 - decade in frammenti di minori dimensioni, ovvero in nuclei di atomi a numero atomico inferiore, con emissione di una grande quantità di energia e radioattività. La fissione può avvenire spontaneamente in natura (fissione spontanea) oppure essere indotta tramite opportuno bombardamento di neutroni.È la reazione nucleare comunemente utilizzata nei reattori nucleari e nei tipi più semplici di arma nucleare, quali le bombe all'uranio (come Little Boy) o al plutonio (come Fat Man) (come quella che colpì Nagasaki). Tutte le bombe a fissione nucleare vengono militarmente etichettate come Bombe A.
  • Štěpná jaderná reakce je jaderná reakce, při níž dochází k rozbití jádra nestabilního atomu vniknutím cizí částice (většinou neutronu) za uvolnění energie.
  • Una fissió nuclear és una reacció nuclear mitjançant la qual un nucli atòmic pesant es divideix en dos o més nuclis lleugers i potser altres subproductes, generalment neutrons i fotons, sovint en forma de raigs gamma. La fissió pot ser una reacció molt exotèrmica que alliberi una quantitat substancial d'energia, tant en forma de radiació electromagnètica com en forma d'energia cinètica, que escalfa el material on es produeix. Aquesta energia estava prèviament emmagatzemada com a energia d'enllaç forta entre els nucleons. La fissió nuclear és una forma de transmutació atès que els fragments que es produeixen són elements diferents de l'original.La fissió es pot induir de diverses formes. Generalment hom bombardeja el nucli amb un neutró de l'energia adequada. Aquest neutró lliure és absorbit pel nucli, que esdevé inestable i es divideix en diverses peces (productes de fissió). Aquestes peces generalment consisteixen en dos nuclis més lleugers, dos o tres neutrons lliures i alguns fotons. La fissió nuclear també es pot induir pel bombardeig amb protons, altres nuclis, o fotons molt energètics. En alguns elements, la fissió nuclear pot fins i tot esdevenir de manera espontània. La fissió nuclear és tant més fàcil com més pesant sigui el nucli atòmic original. Els elements més habituals per produir fissió són l'urani i el plutoni.A la fissió de l'urani-235 es produeixen uns 925 megawatts d'energia. A cada fissió es despren un nombre mig de 2'42 neutrons de fissió per a una energia neutrònica de 0'025 electrovolts (neutrons lents), o 2'07 neutrons de mitjana per a cada fissió (i majors per a energies neutroniques una mica majors). L'energia cinètica dels neutrons obtinguts per fissió és de l'ordre de dos electrovolts. Més del 99% dels neutrons produïts són instantanis i la resta són neutrons retardats. Tanmateix els productes que genera la fissió nuclear són radioactius i continuen actius durant milers d'anys, cosa que fa que el tractament dels residus radioactius sigui un problema important a considerar. La preocupació per l'acumulació i el tractament dels residus nuclears i també per l'efecte destructiu de les armes nuclears s'oposen als avantatges de l'energia nuclear obtinguda a centrals nuclears com a font d'energia primària i han fet sorgir un debat polític i social sobre la seva conveniència.
  • En física nuclear, la fisión es una reacción nuclear, lo que significa que tiene lugar en el núcleo atómico. La fisión ocurre cuando un núcleo pesado se divide en dos o más núcleos pequeños, además de algunos subproductos como neutrones libres, fotones (generalmente rayos gamma) y otros fragmentos del núcleo como partículas alfa (núcleos de helio) y beta (electrones y positrones de alta energía).
  • Fisika nuklearrean eta kimika nuklearrean, fisio nuklearra atomo baten nukleoa zati txikiagotan zatitzen duen erreakzio nuklearra da. Zatiketaren ondorioz, sarritan neutroi askeak eta nukleo atomiko arinagoak sortzen dira, eta azken hauek fotoiak sor ditzakete gamma izpi eran. Elementu astunen fisioa erreakzio exotermikoa denez, energia-kantitate handiak aska daitezke bai erradiazio elektromagnetiko gisa bai pusken energia zinetiko gisa (fisioa gertatu den edukiontziaren materia berotuz). Fisioak energia ekoitz dezan, sortutako elementuen lotura-energiak abioko elementuarenak baino handiagoa izan behar du. Fisioa transmutazio nuklearraren forma bat da, prozesuaren ondorioz sortutako elementuak eta jatorrizko atomoaren elementu kimikoa ez baitira berdinak.Fisio nuklearraren bi erabilera nagusiak energia nuklearra edo arma nuklearrak sortzea da. Bi erabilera hauetarako ezinbestekoa da hainbat substantziek (erregai nuklear deiturikoek) neutroi askeen kolpea jasaten dutenean hautsi eta neutroi gehiago ekoitz ditzaten. Honi esker, berez manten daitekeen kate-erreakzio bat sortzen da, eta energia modu kontrolatuan askatzen da (erreaktore nuklearren kasuan) edo kontrolik gabe (arma nuklearretan).Erregai nuklearrak duen energia-kopurua gasolinak daukan energia baino milioika aldiz handiagoa da, eta horregatik fisio nuklearra energia lortzeko iturri tentagarria da; hala ere, fisio nuklearraren produktuak erradioaktiboak dira eta denbora luzez irauten dute, hondakin erradioaktiboen arazoa sortuz.Gaur egun existitzen diren zentral nuklear gehienetan energia fisioaren bidez lortzen da eta hau aurrera eraman ahal izateko uranioa behar da. Prozesu honetan uranioaren isotopoak erabiltzen dira eta hauek fisioa jasaten dute erreaktoreetan.
  • Rozszczepienie jądra atomowego to przemiana jądrowa polegająca na rozpadzie jądra na dwa (rzadziej na więcej) fragmenty o zbliżonych masach. Zjawisku towarzyszy emisja neutronów, a także kwantów gamma, które unoszą znaczne ilości energii. Ponieważ jądra ulegające rozszczepieniu zwykle są jądrami ciężkimi, które posiadają więcej neutronów niż protonów, obydwa fragmenty powstałe w rozszczepieniu są jądrami neutrono-nadmiarowymi. Nadmiar neutronów jest z nich emitowany podczas aktu rozszczepienia (neutrony natychmiastowe) lub z pewnym opóźnieniem (neutrony opóźnione).Jądra atomowe ulegają rozszczepieniu zarówno w sposób samoistny, jak i wymuszony. W tym drugim przypadku rozszczepiają się w wyniku zderzenia z neutronami, protonami, kwantami gamma lub innymi cząstkami. Największe praktyczne znaczenie ma rozszczepienie wymuszone wywołane zderzeniem z neutronami (w energetyce i wojskowości; patrz też niżej). Rozszczepienie samorzutne są istotne w metodach datowania radioizotopowego. Metodą łączącą oba aspekty jest analiza aktywacyjna.Ze względu na przeważające zainteresowanie rozszczepieniem wymuszonym, zazwyczaj opuszcza się przymiotnik „wymuszone” i przez termin „rozszczepienie jądra atomowego” rozumie się rozszczepienie wywołane pochłonięciem neutronu. Z tego też względu w tym artykule opisane jest wymuszone rozszczepienie. Rozszczepienie samoistne opisane jest w oddzielnym artykule.
  • Kernsplijting (zelden: kernfissie) is in de natuurkunde een proces waarbij een zware onstabiele atoomkern zich deelt of splijt in twee of meer lichtere kernen, waarbij aanzienlijke hoeveelheden energie vrijkomen.
  • Dalam fisika nuklir dan kimia nuklir, fisi nuklir adalah reaksi nuklir saat nukleus atom terbagi menjadi bagian-bagian yang lebih kecil (nuklei yang lebih ringan), yang seringkali menghasilkan foton dan neutron bebas (dalam bentuk sinar gamma), dan melepaskan energi yang sangat besar. Dua nuklei yang dihasilkan biasanya ukurannya sebanding, dengan rasio massa sekitar 3:2 untuk isotop fisil. Fisi yang biasanya terjadi adalah fisi biner, namun kadang-kadang (2 hingga 4 kali per 1000 peristiwa), tiga pecahan bermuatan positif dihasilkan dalam fisi ternari. Bagian terkecil dari ketiga nuklei ini ukurannya bervariasi antara sebesar proton hingga nukleus argon.Reaksi nuklir energetik ini biasanya dipicu oleh neutron, meskipun kadang-kadang fisi juga dianggap sebagai salah satu bentuk peluruhan radioaktif spontan, terutama dalam isotop dengan nomor massa yang sangat besar. Komposisi hasil yang tak dapat diprediksi (yang bervariasi dalam kemungkinan yang beragam dan ketidakberaturan) membedakan fisi dari proses penerowongan kuantum murni seperti emisi proton, peluruhan alfa, dan peluruhan kluster, yang menghasilkan produk yang sama setiap saat.Fisi elemen berat merupakan reaksi eksotermik yang dapat melepaskan energi yang besar, baik sebagai radiasi elektromagnetik maupun energi kinetik pecahan. Agar fisi dapat menghasilkan energi, jumlah energi pengikat dari unsur yang dihasilkan harus lebih besar daripada unsur awal. Fisi merupakan salah satu bentuk transmutasi nuklir karena pecahan yang dihasilkan tidak sama dengan unsur atom awalnya.Fisi nuklir menghasilkan energi listrik dan dimanfaatkan sebagai senjata. Pemanfaatan tersebut mungkin dilakukan karena substansi tertentu yang disebut bahan nuklir mengalami fisi saat terkena neutron fisi, dan lalu menghasilkan neutron saat mereka terbagi. Hal ini memungkinkan reaksi berantai yang melepaskan energi dalam tingkat yang terkontrol di reaktor nuklir atau dalam tingkat yang sangat cepat dan tak terkontrol dalam senjata nuklir.Jumlah energi bebas yang dikandung dalam bahan bakar nuklir adalah jutaan kali jumlah energi bebas dalam bahan bakar kimia dengan massa yang sama (contohnya bensin), sehingga fisi nuklir merupakan sumber energi yang sangat padat. Akan tetapi, hasil dari fisi nuklir memiliki sifat radioaktif yang jauh lebih besar, sehingga menimbulkan masalah limbah nuklir. Kekhawatiran akan limbah nuklir dan daya hancur senjata nuklir telah memicu perdebatan.
  • Na física nuclear o processo de fissão nuclear é a quebra do núcleo de um átomo instável em dois átomos menores pelo bombardeamento de partículas como nêutrons. Os isótopos formados pela divisão têm massa parecida, no entanto geralmente seguem a proporção de massa de 3 para 2.O processo de fissão é uma reação exotérmica onde há liberação violenta de energia, por isso pode ser comumente observado em usinas nucleares e/ou bombas atômicas. A fissão é considerada uma forma de transmutação nuclear pois os fragmentos gerados não são do mesmo elemento do que o isótopo gerador.
  • 핵분열(核分裂, nuclear fission, 문화어: 핵분렬)은 큰 원자(보통 우라늄, 플루토늄)의 원자핵이 두 개 이상의 다른 원자핵으로 쪼개지는 현상이다.인공적인 핵분열에서는 대체로 중성자가 원자핵에 충돌하는 것이 그 원인이 되는데, 핵분열의 결과로 보통 2, 3개의 중성자가 다시 생겨나곤 하므로, 한 핵분열 현상은 또 다른 핵분열 현상을 일으킬 수 있는 원인이 될 수 있다. 따라서 인공적인 핵분열 반응은 핵 연쇄 반응이 될 수 있다.핵분열을 연쇄적으로 일으키면 대량의 핵분열을 한꺼번에 일으킬 수 있는데, 핵반응은 보통 그 에너지가 화학 반응에 비해 막대하므로, 대량의 핵분열은 극히 많은 에너지를 방출한다. 이러한 연쇄 핵분열 반응의 속도를 줄이지 않고 일시에 일으키는 것의 예가 원자 폭탄이고, 중성자 흡수제를 이용하여 반응속도를 줄여서 지속적으로 고온을 내도록 하는 것이 원자로이다. 이런 것을 이용해서 에너지를 만드는 장소는 원자력 발전소라고 일컫는다.핵반응은 흔히 반응 전후의 질량을 비교하여 특수상대성이론의 파생 방정식으로 그 에너지를 산출하는데, 핵분열은 그 예시로 일반 대중에게 널리 알려져 있다.E=mc² E:에너지, m:질량, c:광속도1938년 독일의 오토 한과 프리츠 스트라우스만이 우라늄에 중성자를 조사시키면 바륨의 동위 원소가 생성된다는 것을 처음으로 입증했다.
  • Деле́ние ядра́ — процесс расщепления атомного ядра на два (реже три) ядра с близкими массами, называемых осколками деления. В результате деления могут возникать и другие продукты реакции: лёгкие ядра (в основном альфа-частицы), нейтроны и гамма-кванты. Деление бывает спонтанным (самопроизвольным) и вынужденным (в результате взаимодействия с другими частицами, прежде всего, с нейтронами). Деление тяжёлых ядер — экзотермический процесс, в результате которого высвобождается большое количество энергии в виде кинетической энергии продуктов реакции, а также излучения. Деление ядер служит источником энергии в ядерных реакторах и ядерном оружии.
  • A maghasadás (fisszió) során egy atommag két vagy több kisebb magra szakad. A maghasadást gamma-, valamint neutronsugárzás is kísérheti. A nehéz elemek maghasadása exoterm folyamat, melynek során nagy mennyiségű energia szabadul fel elektromágneses sugárzás és a hasadványok mozgási energiájának formájában. Ahhoz, hogy a maghasadás során energia szabaduljon fel, a termékmagok kötési energiájának nagyobbnak kell lennie, mint a kiindulási mag kötési energiája. A maghasadás az elemátalakulás (transzmutáció) egyik lehetséges módja, mivel a folyamat végén kapott hasadványmagok nem azonosak az eredeti kémiai elemmel.A maghasadás révén atomenergia termelhető, vagy nukleáris fegyverekben robbantás céljára is felhasználható. Mindkét alkalmazás alapja az, hogy bizonyos anyagok (hasadóanyagok) szabad neutronnal való ütközés hatására maghasadást szenvednek, ugyanakkor a hasadás során belőlük szabad neutronok keletkeznek. Ez önfenntartó láncreakciót hoz létre, melynek segítségével atomreaktorban szabályozott energiafelszabadulás, atomfegyverben viszont nagyon gyors, ellenőrizetlen reakció megy végbe.A nukleáris fűtőanyagban tárolt szabadenergia mennyisége milliószorosa a hasonló tömegű kémiai tüzelőanyagokban – például benzinben – tárolt szabadenergiának, így a maghasadás bizonyítottan hatékony energiaforrás. A maghasadás termékei viszont átlagban sokkal radioaktívabbak, mint a hasadóanyagként használt nehéz elemek, és radioaktivitásuk jelentős ideig megmarad, így a keletkező nukleáris hulladék kezelése is probléma.
  • 核分裂反応(かくぶんれつはんのう、英: nuclear fission)とは、不安定核(重い原子核や陽子過剰核、中性子過剰核など)が分裂してより軽い元素を二つ以上作る反応のことを指す。オットー・ハーンとフリッツ・シュトラスマンらが天然ウランに低速中性子(slow neutron)を照射し、反応生成物にバリウムの同位体を見出したことにより発見され、リーゼ・マイトナーとオットー・ロベルト・フリッシュらが核分裂反応であると解釈し、fission(核分裂)と命名した。
  • Fisyon, kütle numarası çok büyük bir atom çekirdeğinin parçalanarak kütle numarası küçük iki çekirdeğe dönüşmesi olayıdır. Fisyon reaksiyonlarında radyoaktif elementler kullanılır ve tepkimeler için bir ilk enerjiye (aktiflenme enerjisi) ihtiyaç vardır. Reaksiyon sonucunda kararsız çekirdekler ve nötron oluşur. Oluşan nötronların her biri yeni bir uranyum atomu ile tepkimeye girer. Bu esnada açığa çıkan nötronlar ortamdan uzaklaştırılmazsa tepkime zincirleme olarak devam eder.Fisyon reaksiyonları kontrollü olarak gerçekleştirilmelidir. Eğer reaksiyonlar kontrol altına alınmazsa açığa çıkan enerji büyük bir patlama oluşturur. Buna nükleer bomba ya da atom bombası denir. Bu olayda büyük miktarda enerji açığa çıkar. Bölünme tepkimeleri atom bombalarının yapımında ve nükleer santrallerde enerji üretiminde kullanılır.Örneğin, Uranyum-235 nötron bombardımanına tutulur. Bombardımanda uranyum mevcut nötronlarından birini bile kaybetse kararsız bir hâl alır ve bu tepkime zincirleme reaksiyona girerek madde kendini parçalar. Ardından baryum 142 ve kripton 91'e dönüşür. Bununla birlikte üç nötron salar ve yüksek miktarda gama ışıması yapar. Bu yaklaşık 25.000 ton kömürün enerjisine eşittir. Fisyon tepkimelerinde açığa çıkan enerji nükleer reaktörlerde kontrollü olarak kullanılarak enerji elde edilebilir. Ayrıca açığa çıkan alfa ve gama ışınları bilimsel deneylerde kullanılır.
dbpedia-owl:thumbnail
dbpedia-owl:wikiPageID
  • 14385 (xsd:integer)
dbpedia-owl:wikiPageLength
  • 43436 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 118 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 110613465 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
prop-fr:align
  • left
prop-fr:titre
  • Vitesses et énergies des fragments de fission
prop-fr:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • La fission nucléaire est le phénomène par lequel le noyau d'un atome lourd (noyau qui contient beaucoup de nucléons, tels les noyaux d'uranium et de plutonium) est divisé en plusieurs nucléides plus légers, généralement deux nucléides.
  • Kernspaltung (englisch nuclear fission) bezeichnet einen Prozess der Kernphysik, bei dem ein Atomkern unter Energiefreisetzung in zwei oder mehr Bestandteile zerlegt wird. Seltener wird die Kernspaltung auch als Kernfission (lateinisch fissio ‚das Spalten‘) bezeichnet – ein Begriff, der nicht mit Kernfusion, dem Verschmelzen zweier Atomkerne, verwechselt werden darf. Die durch die Spaltung neu entstandenen Stoffe heißen Spaltprodukte.
  • Štěpná jaderná reakce je jaderná reakce, při níž dochází k rozbití jádra nestabilního atomu vniknutím cizí částice (většinou neutronu) za uvolnění energie.
  • En física nuclear, la fisión es una reacción nuclear, lo que significa que tiene lugar en el núcleo atómico. La fisión ocurre cuando un núcleo pesado se divide en dos o más núcleos pequeños, además de algunos subproductos como neutrones libres, fotones (generalmente rayos gamma) y otros fragmentos del núcleo como partículas alfa (núcleos de helio) y beta (electrones y positrones de alta energía).
  • Kernsplijting (zelden: kernfissie) is in de natuurkunde een proces waarbij een zware onstabiele atoomkern zich deelt of splijt in twee of meer lichtere kernen, waarbij aanzienlijke hoeveelheden energie vrijkomen.
  • 核分裂反応(かくぶんれつはんのう、英: nuclear fission)とは、不安定核(重い原子核や陽子過剰核、中性子過剰核など)が分裂してより軽い元素を二つ以上作る反応のことを指す。オットー・ハーンとフリッツ・シュトラスマンらが天然ウランに低速中性子(slow neutron)を照射し、反応生成物にバリウムの同位体を見出したことにより発見され、リーゼ・マイトナーとオットー・ロベルト・フリッシュらが核分裂反応であると解釈し、fission(核分裂)と命名した。
  • Ядрено делене в ядрената физика и ядрената химия е вид ядрена реакция, при която тежки атомни ядра се разпадат на по-леки такива със сравними маси. Най-често наблюдавано е разпадането на 2 по-леки ядра, но не е изключено разпадането на 3 или 4 ядра със сравними маси. Процесът може да е съпроводен също така с излъчването на неутрони, алфа частици, гама лъчи и голямо количество енергия.
  • In fisica nucleare la fissione nucleare è una reazione nucleare in cui il nucleo di un elemento pesante - ad esempio uranio-235 o plutonio 239 - decade in frammenti di minori dimensioni, ovvero in nuclei di atomi a numero atomico inferiore, con emissione di una grande quantità di energia e radioattività.
  • Fisyon, kütle numarası çok büyük bir atom çekirdeğinin parçalanarak kütle numarası küçük iki çekirdeğe dönüşmesi olayıdır. Fisyon reaksiyonlarında radyoaktif elementler kullanılır ve tepkimeler için bir ilk enerjiye (aktiflenme enerjisi) ihtiyaç vardır. Reaksiyon sonucunda kararsız çekirdekler ve nötron oluşur. Oluşan nötronların her biri yeni bir uranyum atomu ile tepkimeye girer.
  • Rozszczepienie jądra atomowego to przemiana jądrowa polegająca na rozpadzie jądra na dwa (rzadziej na więcej) fragmenty o zbliżonych masach. Zjawisku towarzyszy emisja neutronów, a także kwantów gamma, które unoszą znaczne ilości energii. Ponieważ jądra ulegające rozszczepieniu zwykle są jądrami ciężkimi, które posiadają więcej neutronów niż protonów, obydwa fragmenty powstałe w rozszczepieniu są jądrami neutrono-nadmiarowymi.
  • Деле́ние ядра́ — процесс расщепления атомного ядра на два (реже три) ядра с близкими массами, называемых осколками деления. В результате деления могут возникать и другие продукты реакции: лёгкие ядра (в основном альфа-частицы), нейтроны и гамма-кванты. Деление бывает спонтанным (самопроизвольным) и вынужденным (в результате взаимодействия с другими частицами, прежде всего, с нейтронами).
  • Fisika nuklearrean eta kimika nuklearrean, fisio nuklearra atomo baten nukleoa zati txikiagotan zatitzen duen erreakzio nuklearra da. Zatiketaren ondorioz, sarritan neutroi askeak eta nukleo atomiko arinagoak sortzen dira, eta azken hauek fotoiak sor ditzakete gamma izpi eran. Elementu astunen fisioa erreakzio exotermikoa denez, energia-kantitate handiak aska daitezke bai erradiazio elektromagnetiko gisa bai pusken energia zinetiko gisa (fisioa gertatu den edukiontziaren materia berotuz).
  • In nuclear physics and nuclear chemistry, nuclear fission is either a nuclear reaction or a radioactive decay process in which the nucleus of an atom splits into smaller parts (lighter nuclei).
  • A maghasadás (fisszió) során egy atommag két vagy több kisebb magra szakad. A maghasadást gamma-, valamint neutronsugárzás is kísérheti. A nehéz elemek maghasadása exoterm folyamat, melynek során nagy mennyiségű energia szabadul fel elektromágneses sugárzás és a hasadványok mozgási energiájának formájában. Ahhoz, hogy a maghasadás során energia szabaduljon fel, a termékmagok kötési energiájának nagyobbnak kell lennie, mint a kiindulási mag kötési energiája.
  • Dalam fisika nuklir dan kimia nuklir, fisi nuklir adalah reaksi nuklir saat nukleus atom terbagi menjadi bagian-bagian yang lebih kecil (nuklei yang lebih ringan), yang seringkali menghasilkan foton dan neutron bebas (dalam bentuk sinar gamma), dan melepaskan energi yang sangat besar. Dua nuklei yang dihasilkan biasanya ukurannya sebanding, dengan rasio massa sekitar 3:2 untuk isotop fisil.
  • Na física nuclear o processo de fissão nuclear é a quebra do núcleo de um átomo instável em dois átomos menores pelo bombardeamento de partículas como nêutrons. Os isótopos formados pela divisão têm massa parecida, no entanto geralmente seguem a proporção de massa de 3 para 2.O processo de fissão é uma reação exotérmica onde há liberação violenta de energia, por isso pode ser comumente observado em usinas nucleares e/ou bombas atômicas.
  • Una fissió nuclear és una reacció nuclear mitjançant la qual un nucli atòmic pesant es divideix en dos o més nuclis lleugers i potser altres subproductes, generalment neutrons i fotons, sovint en forma de raigs gamma. La fissió pot ser una reacció molt exotèrmica que alliberi una quantitat substancial d'energia, tant en forma de radiació electromagnètica com en forma d'energia cinètica, que escalfa el material on es produeix.
  • 핵분열(核分裂, nuclear fission, 문화어: 핵분렬)은 큰 원자(보통 우라늄, 플루토늄)의 원자핵이 두 개 이상의 다른 원자핵으로 쪼개지는 현상이다.인공적인 핵분열에서는 대체로 중성자가 원자핵에 충돌하는 것이 그 원인이 되는데, 핵분열의 결과로 보통 2, 3개의 중성자가 다시 생겨나곤 하므로, 한 핵분열 현상은 또 다른 핵분열 현상을 일으킬 수 있는 원인이 될 수 있다. 따라서 인공적인 핵분열 반응은 핵 연쇄 반응이 될 수 있다.핵분열을 연쇄적으로 일으키면 대량의 핵분열을 한꺼번에 일으킬 수 있는데, 핵반응은 보통 그 에너지가 화학 반응에 비해 막대하므로, 대량의 핵분열은 극히 많은 에너지를 방출한다. 이러한 연쇄 핵분열 반응의 속도를 줄이지 않고 일시에 일으키는 것의 예가 원자 폭탄이고, 중성자 흡수제를 이용하여 반응속도를 줄여서 지속적으로 고온을 내도록 하는 것이 원자로이다.
rdfs:label
  • Fission nucléaire
  • Fisi nuklir
  • Fisio nuklear
  • Fisión nuclear
  • Fissione nucleare
  • Fissió nuclear
  • Fissão nuclear
  • Fisyon
  • Kernspaltung
  • Kernsplijting
  • Maghasadás
  • Nuclear fission
  • Rozszczepienie jądra atomowego
  • Štěpná jaderná reakce
  • Деление ядра
  • Ядрено делене
  • 核分裂反応
  • 핵분열
owl:sameAs
http://www.w3.org/ns/prov#wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbpedia-owl:knownFor of
is dbpedia-owl:wikiPageDisambiguates of
is dbpedia-owl:wikiPageRedirects of
is dbpedia-owl:wikiPageWikiLink of
is prop-fr:renomméePour of
is prop-fr:typeArme of
is foaf:primaryTopic of