In mathematics, a Cantor space, named for Georg Cantor, is a topological abstraction of the classical Cantor set: a topological space is a Cantor space if it is homeomorphic to the Cantor set. In set theory, the topological space 2ω is called "the" Cantor space. Note that, commonly, 2ω is referred to simply as the Cantor set, while the term Cantor space is reserved for the more general construction of DS for a finite set D and a set S which might be finite, countable or possibly uncountable.
Property | Value |
dbpedia-owl:abstract
|
- In mathematics, a Cantor space, named for Georg Cantor, is a topological abstraction of the classical Cantor set: a topological space is a Cantor space if it is homeomorphic to the Cantor set. In set theory, the topological space 2ω is called "the" Cantor space. Note that, commonly, 2ω is referred to simply as the Cantor set, while the term Cantor space is reserved for the more general construction of DS for a finite set D and a set S which might be finite, countable or possibly uncountable.
- In de topologie, een deelgebied van de wiskunde, is een Cantor-ruimte, vernoemd naar Georg Cantor, een topologische abstractie van de klassieke Cantor-verzameling: een topologische ruimte is een Cantor-ruimte als deze topologische ruimte homeomorf is met de Cantor-verzameling. In de verzamelingenleer wordt de topologische ruimte 2ω "de" Cantor-ruimte genoemd.
|
dbpedia-owl:wikiPageID
| |
dbpedia-owl:wikiPageLength
| |
dbpedia-owl:wikiPageOutDegree
| |
dbpedia-owl:wikiPageRevisionID
| |
dbpedia-owl:wikiPageWikiLink
| |
prop-fr:wikiPageUsesTemplate
| |
dcterms:subject
| |
rdfs:comment
|
- In mathematics, a Cantor space, named for Georg Cantor, is a topological abstraction of the classical Cantor set: a topological space is a Cantor space if it is homeomorphic to the Cantor set. In set theory, the topological space 2ω is called "the" Cantor space. Note that, commonly, 2ω is referred to simply as the Cantor set, while the term Cantor space is reserved for the more general construction of DS for a finite set D and a set S which might be finite, countable or possibly uncountable.
- In de topologie, een deelgebied van de wiskunde, is een Cantor-ruimte, vernoemd naar Georg Cantor, een topologische abstractie van de klassieke Cantor-verzameling: een topologische ruimte is een Cantor-ruimte als deze topologische ruimte homeomorf is met de Cantor-verzameling. In de verzamelingenleer wordt de topologische ruimte 2ω "de" Cantor-ruimte genoemd.
|
rdfs:label
|
- Espace de Cantor
- Cantor space
- Cantor-Raum
- Cantor-ruimte
- Spazio di Cantor
|
owl:sameAs
| |
http://www.w3.org/ns/prov#wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbpedia-owl:wikiPageDisambiguates
of | |
is dbpedia-owl:wikiPageRedirects
of | |
is dbpedia-owl:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |