En mathématiques, l'espace L∞ est un des espaces classiques de l'analyse fonctionnelle. Il est constitué de fonctions mesurables bornées, modulo la relation d'égalité presque partout. Il s'agit d'un espace de Banach qui vient s'ajouter à la famille des espaces Lp de fonctions mesurables dont la puissance p-ième est intégrable.

PropertyValue
dbpedia-owl:abstract
  • En mathématiques, l'espace L∞ est un des espaces classiques de l'analyse fonctionnelle. Il est constitué de fonctions mesurables bornées, modulo la relation d'égalité presque partout. Il s'agit d'un espace de Banach qui vient s'ajouter à la famille des espaces Lp de fonctions mesurables dont la puissance p-ième est intégrable.
  • Существенный супремум — это аналог супремума, более подходящий для нужд функционального анализа. В этой науке обычно не интересуются тем, что происходит на множестве меры нуль, что учитывается в определении.
  • In mathematics, the concepts of essential supremum and essential infimum are related to the notions of supremum and infimum, but the former are more relevant in measure theory, where one often deals with statements that are not valid everywhere, that is for all elements in a set, but rather almost everywhere, that is, except on a set of measure zero.Let (X, Σ, μ) be a measure space, and let f : X → R be a function defined on X and with real values, which is not necessarily measurable. A real number a is called an upper bound for f if f(x) ≤ a for all x in X, that is, if the setis empty. In contrast, a is called an essential upper bound if the set is contained in a set of measure zero, that is to say, if f(x) ≤ a for almost all x in X. Then, in the same way as the supremum of f is defined to be the smallest upper bound, the essential supremum is defined as the smallest essential upper bound.More formally, the essential supremum of f, ess sup f, is defined by if the set of essential upper bounds is not empty, and ess sup f = +∞ otherwise. Exactly in the same way one defines the essential infimum as the largest essential lower bound, that is,if the set of essential lower bounds is not empty, and as −∞ otherwise.
dbpedia-owl:wikiPageID
  • 1247021 (xsd:integer)
dbpedia-owl:wikiPageLength
  • 2291 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 18 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 109759721 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • En mathématiques, l'espace L∞ est un des espaces classiques de l'analyse fonctionnelle. Il est constitué de fonctions mesurables bornées, modulo la relation d'égalité presque partout. Il s'agit d'un espace de Banach qui vient s'ajouter à la famille des espaces Lp de fonctions mesurables dont la puissance p-ième est intégrable.
  • Существенный супремум — это аналог супремума, более подходящий для нужд функционального анализа. В этой науке обычно не интересуются тем, что происходит на множестве меры нуль, что учитывается в определении.
  • In mathematics, the concepts of essential supremum and essential infimum are related to the notions of supremum and infimum, but the former are more relevant in measure theory, where one often deals with statements that are not valid everywhere, that is for all elements in a set, but rather almost everywhere, that is, except on a set of measure zero.Let (X, Σ, μ) be a measure space, and let f : X → R be a function defined on X and with real values, which is not necessarily measurable.
rdfs:label
  • Espace L∞
  • Essential supremum and essential infimum
  • Supremo essencial
  • Wesentliches Supremum
  • Существенный супремум
  • 本質的上限と本質的下限
owl:sameAs
http://www.w3.org/ns/prov#wasDerivedFrom
foaf:isPrimaryTopicOf
is dbpedia-owl:wikiPageRedirects of
is dbpedia-owl:wikiPageWikiLink of
is foaf:primaryTopic of