La rotation d'un système est un cas particulier de mouvement important notamment de par ses applications industrielles (machines tournantes) mais aussi sur un plan plus fondamental pour la dynamique dans un référentiel tournant, dont le cas le plus important est donné par la dynamique terrestre.

PropertyValue
dbpedia-owl:abstract
  • La rotation d'un système est un cas particulier de mouvement important notamment de par ses applications industrielles (machines tournantes) mais aussi sur un plan plus fondamental pour la dynamique dans un référentiel tournant, dont le cas le plus important est donné par la dynamique terrestre.
  • La energía rotacional es la energía cinética de un cuerpo rígido, que gira en torno a un eje fijo. Esta energía depende del momento de inercia y de la velocidad angular del cuerpo. Mientras más alejada este la masa del cuerpo respecto al eje de rotación, se necesitara más energía para que el cuerpo adquiera una velocidad angular.Esto puede ser ilustrado por el siguiente experimento: dos esferas de idéntica masa y radio se colocan sobre un plano inclinado. Una de las esferas esta hecha de un material ligero, como el plástico. Esta esfera es maciza y sólida. La otra esfera, en cambio, es hueca y esta hecha de un material más denso que el plástico. La esfera hueca rodará más lentamente, ya que toda su masa se acumula en una delgada capa, que está a una cierta distancia del eje de rotación. La esfera maciza se moverá más rápidamente, ya que porcentualmente sus partículas se encuentran más cerca del eje de rotación y por lo tanto se moverán más lentamente, puesto que éstas describen una trayectoria más corta que las partículas de la superficie de la esfera.La energía rotacional es, entre otras cosas, de gran importancia para: turbinas, generadores, neumáticos y ruedas, ejes, hélices.
  • The rotational energy or angular kinetic energy is the kinetic energy due to the rotation of an object and is part of its total kinetic energy. Looking at rotational energy separately around an object's axis of rotation, one gets the following dependence on the object's moment of inertia:where is the angular velocity is the moment of inertia around the axis of rotation is the kinetic energyThe mechanical work required for / applied during rotation is the torque times the rotation angle. The instantaneous power of an angularly accelerating body is the torque times the angular velocity. For free-floating (unattached) objects, the axis of rotation is commonly around its center of mass.Note the close relationship between the result for rotational energy and the energy held by linear (or translational) motion:In the rotating system, the moment of inertia, I, takes the role of the mass, m, and the angular velocity, , takes the role of the linear velocity, v. The rotational energy of a rolling cylinder varies from one half of the translational energy (if it is massive) to the same as the translational energy (if it is hollow).As an example, let us calculate the rotational kinetic energy of the Earth. As the Earth has a period of about 23.93 hours, it has an angular velocity of 7.29×10−5 rad/s. The Earth has a moment of inertia, I = 8.04×1037 kg·m2. Therefore, it has a rotational kinetic energy of 2.138×1029 J.Part of it can be tapped using tidal power. Additional friction of the two global tidal waves creates energy in a physical manner, infinitesimally slowing down Earth's angular velocity ω. Due to the conservation of angular momentum, this process transfers angular momentum to the Moon's orbital motion, increasing its distance from Earth and its orbital period (see tidal locking for a more detailed explanation of this process).
  • Kinetická energie rotujícího tělesa je energie tělesa, které rotuje. Je dána součtem kinetických energií všech jeho částic.
  • Rotationsenergie ist die kinetische Energie eines starren Körpers (Beispiel: Schwungrad), der um eine feste Achse rotiert. Diese Energie ist abhängig von dem Trägheitsmoment und der Winkelgeschwindigkeit des Körpers. Je mehr Masse von der Rotationsachse entfernt ist, desto mehr Energie wird benötigt, um einen Körper auf eine bestimmte Rotationsgeschwindigkeit zu bringen.Dies lässt sich durch folgendes Experiment verdeutlichen: Zwei gleich schwere Kugeln mit identischen Radien werden auf eine schiefe Ebene gelegt und rollen herunter. Eine Kugel besteht aus einem leichten Material wie Kunststoff und ist massiv gefertigt. Die andere Kugel jedoch ist hohl, besteht aber aus einem dichteren und somit schwereren Material als Kunststoff. Die hohle Kugel wird langsamer rollen, da bei ihr die gesamte Masse auf einer dünnen Schale mit gewissem Abstand zur Rotationsachse verteilt ist. Die massive Kugel mit derselben Masse rollt schneller, weil prozentual mehr Masse nahe der Rotationsachse liegt und sich daher langsamer auf der Kreisbahn bewegen muss.Rotationsenergie ist unter anderem von Bedeutung bei: Turbinen, Generatoren, Rädern und Reifen, Wellen, Propellern.
dbpedia-owl:wikiPageID
  • 241208 (xsd:integer)
dbpedia-owl:wikiPageLength
  • 8064 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 19 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 108364284 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • La rotation d'un système est un cas particulier de mouvement important notamment de par ses applications industrielles (machines tournantes) mais aussi sur un plan plus fondamental pour la dynamique dans un référentiel tournant, dont le cas le plus important est donné par la dynamique terrestre.
  • Kinetická energie rotujícího tělesa je energie tělesa, které rotuje. Je dána součtem kinetických energií všech jeho částic.
  • Rotationsenergie ist die kinetische Energie eines starren Körpers (Beispiel: Schwungrad), der um eine feste Achse rotiert. Diese Energie ist abhängig von dem Trägheitsmoment und der Winkelgeschwindigkeit des Körpers.
  • The rotational energy or angular kinetic energy is the kinetic energy due to the rotation of an object and is part of its total kinetic energy. Looking at rotational energy separately around an object's axis of rotation, one gets the following dependence on the object's moment of inertia:where is the angular velocity is the moment of inertia around the axis of rotation is the kinetic energyThe mechanical work required for / applied during rotation is the torque times the rotation angle.
  • La energía rotacional es la energía cinética de un cuerpo rígido, que gira en torno a un eje fijo. Esta energía depende del momento de inercia y de la velocidad angular del cuerpo. Mientras más alejada este la masa del cuerpo respecto al eje de rotación, se necesitara más energía para que el cuerpo adquiera una velocidad angular.Esto puede ser ilustrado por el siguiente experimento: dos esferas de idéntica masa y radio se colocan sobre un plano inclinado.
rdfs:label
  • Dynamique de rotation
  • Energia rotazionale
  • Energía cinética rotacional
  • Kinetická energie při rotaci
  • Rotational energy
  • Rotationsenergie
owl:sameAs
http://www.w3.org/ns/prov#wasDerivedFrom
foaf:isPrimaryTopicOf
is dbpedia-owl:wikiPageDisambiguates of
is dbpedia-owl:wikiPageRedirects of
is dbpedia-owl:wikiPageWikiLink of
is foaf:primaryTopic of