数学、とくに解析学における微分法(びぶんほう、differentiation, derivation)は、空間やその上に定義される関数・写像を各点の近傍で考え、その局所的な振舞いを調べることによって、それらの特徴を記述する方法である。積分法と並んで、解析学における中心的な概念のうちの一つとなっている。微分においては、特定の無限小を基準にして挙動を測っており、考えている無限小よりも高位の無限小についての情報は測り取れずに落ちてしまうため、ある量の微分は基準となる無限小に対して線型性を示し、やや大域的には考えている点の近傍の線型近似として捉えられる。微分から大域的な情報を得るには、貼り合せ条件や積分といった別の手段をきちんと考える必要がある。

PropertyValue
dbpedia-owl:abstract
  • 数学、とくに解析学における微分法(びぶんほう、differentiation, derivation)は、空間やその上に定義される関数・写像を各点の近傍で考え、その局所的な振舞いを調べることによって、それらの特徴を記述する方法である。積分法と並んで、解析学における中心的な概念のうちの一つとなっている。微分においては、特定の無限小を基準にして挙動を測っており、考えている無限小よりも高位の無限小についての情報は測り取れずに落ちてしまうため、ある量の微分は基準となる無限小に対して線型性を示し、やや大域的には考えている点の近傍の線型近似として捉えられる。微分から大域的な情報を得るには、貼り合せ条件や積分といった別の手段をきちんと考える必要がある。
  • Производна на функция е основно понятие в диференциалното смятане, което характеризира скоростта на изменение на функцията. Функция, която има производна, се нарича диференцируема. Понятието е въведено от Нютон и Лайбниц независимо един от друг.
  • En càlcul infinitesimal, la derivada és una mesura de com canvia una funció en modificar el valor de les seves variables. Intuïtivament pot dir-se que la derivada és la rapidesa amb què varia una quantitat determinada en un punt donat. Per exemple, la derivada de la posició d'un cotxe en un moment concret, és la velocitat instantània a la qual va el cotxe en aquell moment; i, de manera recíproca, la integral de la velocitat del cotxe és la seva posició.La derivada de la funció en un punt donat descriu la millor aproximació lineal de la funció en el punt. Per una funció real d'una variable real, la derivada en un punt és igual al pendent de la recta tangent a la gràfica de la funció en aquest punt. En diverses dimensions, la derivada d'una funció en un punt és una aplicació lineal anomenada la linealització de la funció en el punt.Del procés de trobar una derivada se'n diu derivació. El teorema fonamental del càlcul estableix que la derivació és el procés invers al de la integració.
  • Pochodna – w analizie matematycznej miara szybkości zmian wartości funkcji względem zmian jej argumentów.
  • Matematikan, deribatua funtzioaren aldaketaren adierazlea da. Integralarekin batera kalkuluaren bi gai garrantzitsuenetariko bat da; bata bestearen alderantzizkoak izanda (kalkuluaren oinarrizko teoreman esaten den bezala).Deribatuak, funtzioaren aldagaia hazten doan heinean, funtzioak hartzen duen balioaren hazkundea deskribatzen du. Aldi berean, beste funtzio bat definituko du eta funtzio berri hau aztertuz jatorrizko funtzioaren gorakortasuna eta beherakortasuna, ahurtasuna eta ganbiltasuna etab. ezagutu daitezke.Bi aldagaietako funtzioen grafikoetan zuzen tangentearen edo sekantearen limitearen malda adierazten du. Funtzioa jarraitua ez bada edo tangente bertikala badauka puntu batean eta bere inguruan, hor ez da existituko funtzio horren deribatua. Deribatuak aplikazio asko dauzka beste zientzia askotan. Fisikan, adibidez, abiadura posizioaren denborarekiko aldaketa adierazten du; beraz abiadura posizioaren denborarekiko deribatua da.
  • Derivace je důležitý pojem matematické analýzy a základ diferenciálního počtu. Derivace nějaké funkce je změna (růst) obrazu této funkce v poměru k (ideálně) nekonečně malé změně jejích argumentů. Opačným procesem k derivování je integrování.Pojem derivace vznikl v 17. století při řešení geometrických a fyzikálních problémů, typickým příkladem problému je, jak nalézt rovnici tečny ke grafu funkce v jejím libovolném bodě. Koncept derivace se dá nahlížet z mnoha stran, například v případě dvourozměrného grafu funkce f(x), je derivace této funkce v libovolném bodě (ve kterém existuje) rovna směrnici tečny tohoto grafu. Z toho je vidět, že pojem derivace se objevuje i v mnoha geometrických souvislostech, např. u pojmu konkávnosti.
  • La derivata, in matematica, è la misura di quanto il valore di una funzione cambi al variare del suo argomento.Può essere pensata come la misura di quanto una grandezza cambi al variare di una seconda grandezza: per esempio la derivata della posizione di un'automobile rispetto al tempo rappresenta la sua velocità istantanea.La derivata di una funzione è un concetto puntuale, cioè si calcola punto per punto. Nel caso di funzioni a valori reali, essa è la pendenza della tangente al grafico della funzione in quel punto e ne rappresenta la migliore approssimazione lineare. Nel caso in cui la derivata esista (cioè la funzione sia derivabile) in ogni punto del dominio, la si può vedere a sua volta come una funzione che associa ad ogni punto proprio la derivata in quel punto.Il concetto di derivata è, insieme a quello di integrale, uno dei cardini dell'analisi matematica e del calcolo infinitesimale.
  • Произво́дная (функции в точке) — основное понятие дифференциального исчисления, характеризующее скорость изменения функции (в данной точке). Определяется как предел отношения приращения функции к приращению ее аргумента при стремлении приращения аргумента к нулю, если такой предел существует. Функцию, имеющую конечную производную (в некоторой точке), называют дифференцируемой (в данной точке). Процесс вычисления производной называется дифференци́рованием.Обратный процесс — нахождение первообразной — интегрирование.
  • Türev, diğer sayı kümeleri üzerindeki fonksiyonlar için genellenmiş olmasına rağmen öncelikle reel değerli, yani reel sayılardan reel sayılara giden tek değişkenli fonksiyonlar için tanımlanmış, kabaca bir fonksiyonun grafiğine çizilen teğetin eğimini hesaplama tekniğidir.
  • The derivative of a function of a real variable measures the sensitivity to change of a quantity (a function or dependent variable) which is determined by another quantity (the independent variable). It is a fundamental tool of calculus. For example, the derivative of the position of a moving object with respect to time is the object's velocity: this measures how quickly the position of the object changes when time is advanced. The derivative measures the instantaneous rate of change of the function, as distinct from its average rate of change, and is defined as the limit of the average rate of change in the function as the length of the interval on which the average is computed tends to zero.The derivative of a function at a chosen input value describes the best linear approximation of the function near that input value. In fact, the derivative at a point of a function of a single variable is the slope of the tangent line to the graph of the function at that point.The notion of derivative may be generalized to functions of several real variables. The generalized derivative is a linear map called the differential. Its matrix representation is the Jacobian matrix, which reduces to the gradient vector in the case of real-valued function of several variables.The process of finding a derivative is called differentiation. The reverse process is called antidifferentiation. The fundamental theorem of calculus states that antidifferentiation is the same as integration. Differentiation and integration constitute the two fundamental operations in single-variable calculus.
  • A matematikában a derivált (vagy differenciálhányados) a matematikai analízis egyik legalapvetőbb fogalma. A derivált lényegében annak a mértéke, hogy egy egyváltozós valós függvény görbéjéhez rajzolt érintője milyen meredek. Ez a geometriai jellegű fogalom szoros kapcsolatban van a függvény növekedésének elemzésével, a függvényvizsgálattal. A deriváltból következtethetünk a függvény menetére (azaz, hogy monoton növekvő vagy monoton fogyó-e), szélsőértékeire (lehet-e az adott pontban maximuma vagy minimuma), grafikonjának görbületére (konvex vagy konkáv-e a függvénygörbe) a növekedés mértékére (gyorsan változik-e a függvény vagy lassan) a függvény közelítő értékére, lineárissal történő közelíthetőségére.A derivált fogalma a 16. és a 17. században fejlődött ki, geometriai és mechanikai problémák megoldása során. Azóta a differenciálszámítás a matematika nagyon jól feldolgozott témaköre, alkalmazása számos tudományban nélkülözhetetlen. Szigorú matematikai fogalomként csak a függvények differenciálhatóságának fogalmával együtt tárgyalható, de szemléletes tartalma enélkül is megérthető.
  • En matemáticas, la derivada de una función es una medida de la rapidez con la que cambia el valor de dicha función matemática, según cambie el valor de su variable independiente. La derivada de una función es un concepto local, es decir, se calcula como el límite de la rapidez de cambio media de la función en un cierto intervalo, cuando el intervalo considerado para la variable independiente se torna cada vez más pequeño. Por ello se habla del valor de la derivada de una cierta función en un punto dado.Un ejemplo habitual aparece al estudiar el movimiento: si una función representa la posición de un objeto con respecto al tiempo, su derivada es la velocidad de dicho objeto. Un avión que realice un vuelo transatlántico de 4500 km en entre las 12:00 y las 18:00, viaja a una velocidad media de 750 km/h. Sin embargo, puede estar viajando a velocidades mayores o menores en distintos tramos de la ruta. En particular, si entre las 15:00 y las 15:30 recorre 400 km, su velocidad media en ese tramo es de 800 km/h. Para conocer su velocidad instantánea a las 15:20, por ejemplo, es necesario calcular la velocidad media en intervalos de tiempo cada vez menores alrededor de esta hora: entre las 15:15 y las 15:25, entre las 15:19 y las 15:21, etc.El valor de la derivada de una función en un punto puede interpretarse geométricamente, ya que se corresponde con la pendiente de la recta tangente a la gráfica de la función en dicho punto. La recta tangente es a su vez la gráfica de la mejor aproximación lineal de la función alrededor de dicho punto. La noción de derivada puede generalizarse para el caso de funciones de más de una variable con la derivada parcial y el diferencial.La derivada de una función f en un punto x se denota como f′(x). La función cuyo valor en cada punto x es esta derivada es la llamada función derivada de f, denotada por f′. El proceso de encontrar la derivada de una función se denomina diferenciación, y es una de las herramientas principales en el área de las matemáticas conocida como cálculo infinitesimal. Concretamente, el que trata de asuntos vinculados con la derivada se denomina cálculo diferencial.
dbpedia-owl:thumbnail
dbpedia-owl:wikiPageID
  • 10996 (xsd:integer)
dbpedia-owl:wikiPageLength
  • 32718 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 125 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 110278711 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
prop-fr:nomUrl
  • Derivative
prop-fr:titre
  • Derivative
  • Derivative
prop-fr:wikiPageUsesTemplate
prop-fr:wikibooks
  • Analyse/Dérivation
prop-fr:wikiversity
  • Fonction dérivée
prop-fr:wiktionary
  • Dérivée
dcterms:subject
rdfs:comment
  • 数学、とくに解析学における微分法(びぶんほう、differentiation, derivation)は、空間やその上に定義される関数・写像を各点の近傍で考え、その局所的な振舞いを調べることによって、それらの特徴を記述する方法である。積分法と並んで、解析学における中心的な概念のうちの一つとなっている。微分においては、特定の無限小を基準にして挙動を測っており、考えている無限小よりも高位の無限小についての情報は測り取れずに落ちてしまうため、ある量の微分は基準となる無限小に対して線型性を示し、やや大域的には考えている点の近傍の線型近似として捉えられる。微分から大域的な情報を得るには、貼り合せ条件や積分といった別の手段をきちんと考える必要がある。
  • Производна на функция е основно понятие в диференциалното смятане, което характеризира скоростта на изменение на функцията. Функция, която има производна, се нарича диференцируема. Понятието е въведено от Нютон и Лайбниц независимо един от друг.
  • Pochodna – w analizie matematycznej miara szybkości zmian wartości funkcji względem zmian jej argumentów.
  • Türev, diğer sayı kümeleri üzerindeki fonksiyonlar için genellenmiş olmasına rağmen öncelikle reel değerli, yani reel sayılardan reel sayılara giden tek değişkenli fonksiyonlar için tanımlanmış, kabaca bir fonksiyonun grafiğine çizilen teğetin eğimini hesaplama tekniğidir.
  • A matematikában a derivált (vagy differenciálhányados) a matematikai analízis egyik legalapvetőbb fogalma. A derivált lényegében annak a mértéke, hogy egy egyváltozós valós függvény görbéjéhez rajzolt érintője milyen meredek. Ez a geometriai jellegű fogalom szoros kapcsolatban van a függvény növekedésének elemzésével, a függvényvizsgálattal.
  • Matematikan, deribatua funtzioaren aldaketaren adierazlea da. Integralarekin batera kalkuluaren bi gai garrantzitsuenetariko bat da; bata bestearen alderantzizkoak izanda (kalkuluaren oinarrizko teoreman esaten den bezala).Deribatuak, funtzioaren aldagaia hazten doan heinean, funtzioak hartzen duen balioaren hazkundea deskribatzen du.
  • Derivace je důležitý pojem matematické analýzy a základ diferenciálního počtu. Derivace nějaké funkce je změna (růst) obrazu této funkce v poměru k (ideálně) nekonečně malé změně jejích argumentů. Opačným procesem k derivování je integrování.Pojem derivace vznikl v 17. století při řešení geometrických a fyzikálních problémů, typickým příkladem problému je, jak nalézt rovnici tečny ke grafu funkce v jejím libovolném bodě.
  • En matemáticas, la derivada de una función es una medida de la rapidez con la que cambia el valor de dicha función matemática, según cambie el valor de su variable independiente. La derivada de una función es un concepto local, es decir, se calcula como el límite de la rapidez de cambio media de la función en un cierto intervalo, cuando el intervalo considerado para la variable independiente se torna cada vez más pequeño.
  • Произво́дная (функции в точке) — основное понятие дифференциального исчисления, характеризующее скорость изменения функции (в данной точке). Определяется как предел отношения приращения функции к приращению ее аргумента при стремлении приращения аргумента к нулю, если такой предел существует. Функцию, имеющую конечную производную (в некоторой точке), называют дифференцируемой (в данной точке).
  • La derivata, in matematica, è la misura di quanto il valore di una funzione cambi al variare del suo argomento.Può essere pensata come la misura di quanto una grandezza cambi al variare di una seconda grandezza: per esempio la derivata della posizione di un'automobile rispetto al tempo rappresenta la sua velocità istantanea.La derivata di una funzione è un concetto puntuale, cioè si calcola punto per punto.
  • The derivative of a function of a real variable measures the sensitivity to change of a quantity (a function or dependent variable) which is determined by another quantity (the independent variable). It is a fundamental tool of calculus. For example, the derivative of the position of a moving object with respect to time is the object's velocity: this measures how quickly the position of the object changes when time is advanced.
  • En càlcul infinitesimal, la derivada és una mesura de com canvia una funció en modificar el valor de les seves variables. Intuïtivament pot dir-se que la derivada és la rapidesa amb què varia una quantitat determinada en un punt donat.
rdfs:label
  • Dérivée
  • Afgeleide
  • Deribatu
  • Derivace
  • Derivada
  • Derivada
  • Derivada
  • Derivata
  • Derivative
  • Derivált
  • Pochodna
  • Turunan
  • Türev
  • Производна
  • Производная функции
  • 微分法
  • 미분
owl:sameAs
http://www.w3.org/ns/prov#wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbpedia-owl:wikiPageDisambiguates of
is dbpedia-owl:wikiPageRedirects of
is dbpedia-owl:wikiPageWikiLink of
is foaf:primaryTopic of