En mathématiques, un corps local est un corps commutatif topologique localement compact pour une topologie non discrète. Sa topologie est alors définie par une valeur absolue.Les corps locaux interviennent de façon fondamentale en théorie algébrique des nombres.

PropertyValue
dbpedia-owl:abstract
  • En mathématiques, un corps local est un corps commutatif topologique localement compact pour une topologie non discrète. Sa topologie est alors définie par une valeur absolue.Les corps locaux interviennent de façon fondamentale en théorie algébrique des nombres.
  • In mathematics, a local field is a special type of field that is a locally compact topological field with respect to a non-discrete topology.Given such a field, an absolute value can be defined on it. There are two basic types of local field: those in which the absolute value is archimedean and those in which it is not. In the first case, one calls the local field an archimedean local field, in the second case, one calls it a non-archimedean local field. Local fields arise naturally in number theory as completions of global fields.Every local field is isomorphic (as a topological field) to one of the following:Archimedean local fields (characteristic zero): the real numbers R, and the complex numbers C.Non-archimedean local fields of characteristic zero: finite extensions of the p-adic numbers Qp (where p is any prime number).Non-archimedean local fields of characteristic p (for p any given prime number): the field of formal Laurent series Fq((T)) over a finite field Fq (where q is a power of p).There is an equivalent definition of non-archimedean local field: it is a field that is complete with respect to a discrete valuation and whose residue field is finite. However, some authors consider a more general notion, requiring only that the residue field be perfect, not necessarily finite. This article uses the former definition.
  • 대수적 수론에서, 국소체(局所體, 영어: local field)는 위상체의 한 종류다. 대역체(global field)의 완비화로 얻어진다.
  • Em matemática, um corpo local é um tipo especial de corpo que é corpo topológico localmente compacto em relação a uma topologia não discreta.== Referências ==
dbpedia-owl:wikiPageID
  • 205975 (xsd:integer)
dbpedia-owl:wikiPageLength
  • 3740 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 33 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 102978646 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
prop-fr:wikiversity
  • Corps locaux
prop-fr:wikiversityTitre
  • Corps locaux
  • Corps locaux
dcterms:subject
rdfs:comment
  • En mathématiques, un corps local est un corps commutatif topologique localement compact pour une topologie non discrète. Sa topologie est alors définie par une valeur absolue.Les corps locaux interviennent de façon fondamentale en théorie algébrique des nombres.
  • 대수적 수론에서, 국소체(局所體, 영어: local field)는 위상체의 한 종류다. 대역체(global field)의 완비화로 얻어진다.
  • Em matemática, um corpo local é um tipo especial de corpo que é corpo topológico localmente compacto em relação a uma topologia não discreta.== Referências ==
  • In mathematics, a local field is a special type of field that is a locally compact topological field with respect to a non-discrete topology.Given such a field, an absolute value can be defined on it. There are two basic types of local field: those in which the absolute value is archimedean and those in which it is not. In the first case, one calls the local field an archimedean local field, in the second case, one calls it a non-archimedean local field.
rdfs:label
  • Corps local
  • Corpo local
  • Local field
  • Lokaler Körper
  • 局所体
  • 국소체
owl:sameAs
http://www.w3.org/ns/prov#wasDerivedFrom
foaf:isPrimaryTopicOf
is dbpedia-owl:wikiPageDisambiguates of
is dbpedia-owl:wikiPageWikiLink of
is foaf:primaryTopic of