La cinétique enzymatique a pour objet d'identifier et de décrire les mécanismes des réactions biochimiques, catalysées par les enzymes (réaction enzymatique), en étudiant leur vitesse c'est-à-dire leur évolution en fonction du temps.

PropertyValue
dbpedia-owl:abstract
  • La cinétique enzymatique a pour objet d'identifier et de décrire les mécanismes des réactions biochimiques, catalysées par les enzymes (réaction enzymatique), en étudiant leur vitesse c'est-à-dire leur évolution en fonction du temps. En partant des enzymes isolées et en allant vers les systèmes métaboliques organisés et intégrés, la cinétique enzymatique permet de décrire quantitativement les propriétés catalytiques des enzymes et les mécanismes mis en place pour leur régulation.Les enzymes jouent un rôle central dans la régulation des processus biologiques. Elles sont généralement constituées de molécules protéiques issues de la traduction du génome, à l'exception des ribozymes constitués d'ARN. Les enzymes interviennent en diminuant la barrière énergétique entre les réactants permettant d'accélérer les réactions des milliers de fois plus qu'en absence de catalyse.L'activité catalytique des enzymes est hautement spécifique, c'est-à-dire qu'une enzyme donnée, parmi les milliers qui existent, ne peut catalyser qu'une réaction chimique bien précise (p. ex. l'hexokinase permet à l'aide d'une molécule d'ATP de phosphoryler le glucose pour obtenir le glucose-6-phosphate substrat clé dans la glycolyse et la synthèse du glycogène). En effet, la réaction chimique catalysée par une enzyme s'effectue au niveau d'une région bien déterminée de celle-ci, appelée site actif. Dans ce domaine, les acides aminés adoptent une configuration spatiale précise qui confère à cette région des caractéristiques chimiques spéciales rendant compte le cette spécificité vis-à-vis du substrat (voir figure ci-contre).Il existe une relation entre la vitesse d'une réaction catalysée par une enzyme et la concentration ou la disponibilité du substrat. L'activité enzymatique dépend aussi du pH, de la température et souvent de la concentration des ions et des cofacteurs. La régulation de cette activité peut être assurée par des composés appelés effecteurs (généralement de faible poids moléculaire). Les effecteurs positifs (ou activateurs) stabilisent la configuration catalytique active de l'enzyme. Les effecteurs négatifs (ou inhibiteurs), agissent au contraire, en favorisant l'état moins actif (inhibiteurs non compétitifs) ou entrent en compétition avec les molécules de substrat en bloquant le site actif (inhibiteurs compétitifs).La cinétique enzymatique constitue un élément fondamental dans la compréhension de la manière dont les enzymes fonctionnent et conduit à de nombreuses applications dans les industries chimique et agroalimentaire ainsi que dans les biotechnologies et la médecine (pharmacologie, toxicologie).
  • La cinética enzimática estudia la velocidad de las reacciones químicas que son catalizadas por las enzimas. El estudio de la cinética y de la dinámica química de una enzima permite explicar los detalles de su mecanismo catalítico, su papel en el metabolismo, cómo es controlada su actividad en la célula y cómo puede ser inhibida su actividad por fármacos o venenos o potenciada por otro tipo de moléculas.Las enzimas, en su mayoría, proteínas con la capacidad de manipular otras moléculas, denominadas sustratos. Un sustrato es capaz de unirse al centro catalítico de la enzima que lo reconozca y transformarse en un producto a lo largo de una serie de pasos denominados mecanismo enzimático. Algunas enzimas pueden unir varios sustratos diferentes y/o liberar diversos productos, como es el caso de las proteasas al romper una proteína en dos polipéptidos. En otros casos, se produce la unión simultánea de dos sustratos, como en el caso de la ADN polimerasa, que es capaz de incorporar un nucleótido (sustrato 1) a una hebra de ADN (sustrato 2). Aunque todos estos mecanismos suelen seguir una compleja serie de pasos, también suelen presentar una etapa limitante que determina la velocidad final de toda la reacción. Esta etapa limitante puede consistir en una reacción química o en un cambio conformacional de la enzima o del sustrato.El conocimiento adquirido acerca de la estructura de las enzimas ha sido de gran ayuda en la visualización e interpretación de los datos cinéticos. Por ejemplo, la estructura puede sugerir cómo permanecen unidos sustrato y producto durante la catálisis, qué cambios conformacionales ocurren durante la reacción, o incluso el papel en particular de determinados residuos aminoácidos en el mecanismo catalítico. Algunas enzimas modifican su conformación significativamente durante la reacción, en cuyo caso, puede ser crucial saber la estructura molecular de la enzima con y sin sustrato unido (se suelen usar análogos que se unen pero no permiten llevar a cabo la reacción y mantienen a la enzima permanentemente en la conformación de sustrato unido).Los mecanismos enzimáticos pueden ser divididos en mecanismo de único sustrato o mecanismo de múltiples sustratos. Los estudios cinéticos llevados a cabo en enzimas que solo unen un sustrato, como la triosafosfato isomerasa, pretenden medir la afinidad con la que se une el sustrato y la velocidad con la que lo transforma en producto. Por otro lado, al estudiar una enzima que une varios sustratos, como la dihidrofolato reductasa, la cinética enzimática puede mostrar también el orden en el que se unen los sustratos y el orden en el que los productos son liberados.Sin embargo, no todas las catálisis biológicas son llevadas a cabo por enzimas proteicas. Existen moléculas catalíticas basadas en el ARN, como las ribozimas y los ribosomas, esenciales para el splicing alternativo y la traducción del ARNm, respectivamente. La principal diferencia entre las ribozimas y las enzimas radica en el limitado número de reacciones que pueden llevar a cabo las primeras, aunque sus mecanismos de reacción y sus cinéticas pueden ser estudiadas y clasificadas por los mismos métodos.
  • Die Enzymkinetik ist ein Teilgebiet der biophysikalischen Chemie. Sie beschreibt, wie schnell enzymkatalysierte chemische Reaktionen verlaufen. Die Enzymkinetik findet breite Anwendung in Biologie und Medizin, da auch biologische Substrate (Reaktionspartner) – darunter solche, die im Menschen auftreten – untersucht werden.Ein Hauptziel der Enzymkinetik ist die Beschreibung der Konzentrationsabhängigkeit der Reaktionsgeschwindigkeit mit geeigneten Formeln, sowie die Bestimmung der dazugehörigen Parameter für ein bestimmtes Protein (Enzymaktivität und katalytische Effizienz). Da Enzyme dazu dienen, Reaktionen zu beschleunigen und zu lenken, ist die enzymkinetische Analyse zum Verständnis von Enzymfunktionen unerlässlich.
  • 酵素反応速度論 (こうそはんのうそくどろん) とは酵素によって触媒される化学反応を反応速度の面から研究する学問。酵素の反応速度論を研究することで、酵素反応の機構、代謝における役割、活性調節の仕組み、薬物や毒が酵素をどう阻害するかといったことを明らかにできる。酵素は通常蛋白質分子であり、他の分子 (酵素の基質という) に作用する。基質は、酵素の活性部位に結合し、段階的に生成物へと変化を遂げる。この過程は、反応機構と呼ばれる。反応機構は、単一基質機構と、複数基質機構に分類できる。一つの基質としか結合しない酵素、例えばトリオースリン酸イソメラーゼの研究では酵素が基質と結合する際の解離定数や回転率の測定を目指す。酵素が複数の基質と結合する場合、例えばジヒドロ葉酸還元酵素 (右図) では、基質が結合し、生成物が解離する順序を明らかにすることもできる。1つの基質と結合し、複数の生成物を放出する酵素の例としてプロテアーゼ が挙げられる。この酵素は1つの基質蛋白質を切断して、2つのポリペプチドにする。2つの基質を1つに結合する酵素もある。DNAポリメラーゼはヌクレオチドをDNAに結合する。これらの酵素の反応機構は複雑で何段階にも及ぶことが多いが、通常律速段階があって、これが全体の反応速度を決定する。律速段階は化学反応であったり、(生成物が酵素から離れる際など) 酵素や基質のコンフォメーションの変化であったりする。酵素の立体構造が分かると、速度論的な情報の解釈に有利である。例えば構造から触媒過程で基質や生成物がどのように結合しているか、反応中にどう変化するかが分かる。また、特定のアミノ酸残基が反応機構で果たす役割が分かることもある。酵素によっては反応中に構造が大きく変化するものがあるが、このような場合は酵素の構造を触媒を受けない基質類似体が結合した場合と、結合していない場合それぞれで決定しておくとよい。生体で触媒として働くのは蛋白質でできた酵素だけではない。RNAによる触媒、つまりリボソームのようなリボザイムは、RNAスプライシングや翻訳といった多くの過程で不可欠である。リボザイムと酵素の主要な違いは、RNAのほうが触媒できる反応が限られているということだ。もっとも、RNAによる触媒の機構も、蛋白質酵素の場合と同じ方法で解析し、分類することができる。
  • A cinética enzimática estuda as reacções químicas catalisadas pelas enzimas, em especial a velocidade de reacção. O estudo da cinética de uma enzima permite elucidar os pormenores do seu mecanismo catalítico, o seu papel no metabolismo, como é controlada a sua actividade na célula e como pode ser inibida a sua actividade por drogas ou venenos, ou potenciada por outro tipo de moléculas.
  • La cinètica enzimàtica estudia la velocitat de les reaccions químiques que són catalitzades pels enzims. L'estudi de la cinètica d'un enzim permetrà elucidar els detalls del seu mecanisme catalític, el seu paper en el metabolisme, com es controla la seva activitat en la cèl·lula i com pot ser inhibida la seva activitat amb fàrmacs o verins o potenciada per altre tipus de molècules.Els enzims són macromolècules amb la capacitat de manipular altres molècules, denominades substrats. Un substrat és capaç d'unir-se al centre catalític de l'enzim que el reconegui i transformar-se en un producte al llarg d'una sèrie de passos denominats mecanisme enzimàtic. Alguns enzims poden unir diversos substrats diferents i/o alliberar diversos productes, com és el cas de les proteases al trencar una proteïna en dos polipèptids. En altres casos, es produeix la unió simultània de dos substrats, com en el cas de l'ADN-polimerasa, que és capaç d'incorporar un nucleòtid (substrat 1) a una cadena d'ADN (substrat 2). Encara que tots aquests mecanismes solen seguir una complexa sèrie de passos, també solen presentar una etapa limitant que determina la velocitat final de tota la reacció. Aquesta etapa limitant pot consistir en una reacció química o en un canvi conformacional de l'enzim o del substrat.El coneixement adquirit sobre l'estructura dels enzims ha estat de gran ajuda en la visualització i interpretació de les dades cinètiques. Per exemple, l'estructura pot suggerir com romanen units substrat i producte durant la catàlisi, quins canvis conformacionals ocorren durant la reacció, o fins i tot el paper en particular de determinats aminoàcids en el mecanisme catalític. Alguns enzims modifiquen la seva conformació significativament durant la reacció, en aquest cas, pot ser crucial saber l'estructura molecular de l'enzim amb i sense substrat unit (se solen usar anàlegs que s'uneixen però no permeten portar a terme la reacció i mantenen a l'enzim permanentment en la conformació de substrat unit). Els mecanismes enzimàtics poden ser dividits en mecanisme d'únic substrat o mecanisme de múltiples substrats. Els estudis cinètics portats a terme en enzims que solament uneixen un substrat, com la triosa fosfat isomerasa, pretenen amidar l'afinitat amb la qual s'uneix el substrat i la velocitat amb la qual el transforma en producte. D'altra banda, quan s'estudia un enzim que uneix diversos substrats, com la dihidrofolat reductasa, la cinètica enzimàtica pot mostrar també l'ordre en el qual s'uneixen els substrats i l'ordre en el qual els productes són alliberats.No obstant això, no totes les catàlisis biològiques són portades a terme per enzims proteics. Existeixen molècules catalítiques basades en l'ARN, com els ribozims i els ribosomes, essencials per a l'empalmament alternatiu i la traducció de l'ARNm, respectivament. La principal diferència entre els ribozims i els ribosomes radica en el limitat nombre de reaccions que poden portar a terme les primeres, encara que els seus mecanismes de reacció i les seves cinètiques poden ser estudiades i classificades pels mateixos mètodes.
  • Enzim kinetiği enzimler tarafından katalizlenen kimyasal reaksiyonların bilmidir. Enzim kinetiğinde reaksiyon hızı ölçülür ve reaksiyon şartlarını değiştirmenin etkisi araştırılır. Bir enzimin kinetiğinin bu şekilde çalışılması enzimin katalitik mekanizmasını, metabolizmadaki rolünü, aktivitesinin nasıl kontrol edildiğini ve bir ilaç veya zehrin enzimi nasıl inhibe edebileceğini ortaya koyabilir.Enzimler genelde diğer molekülleri (enzimin substratları) manipüle eden protein molekülleridir. Bu hedef moleküller enzimin aktif bölgesine bağlanır ve, enzim mekanizması denen bir seri adımlar sonucunda, ürünlere dönüşür. Bu mekanizmalar tek substratlı ve çok substratlı mekanizmalar olarak ayrılabilir. Tek bir substrata bağlanan enzimler (triozfosfat izomeraz gibi) üzerinde yapılan kinetik çalışmalar, enzimin substratına bağlanma afinitesini (ilgisini) ve devir hızını ölçmeyi amaçlar.Enzimler birden çok substrata bağlanınca, (sağda gösterilen) dihidrofolat redüktaz gibi, enzim kinetiği bu substratların bağlanma sırasını ve ürünlerin salınma sırasını gösterebilir. Bir tek substrata bağlanıp birden çok ürün salan enzimlere örnek, proteazlardır, bunlar bir protein substratı kesip iki polipeptit ürün oluştururlar. Başka enzimler iki substratı birleştirir, öreneğin DNA polimeraz'ın DNA'ya bir nükleotit eklemesi gibi. Bu mekanizmalar genelde karmaşık bir adımlar dizisi olsa da, tipik olarak bir hız belirleyici basamak, tüm reaksiyonun hızını belirler. Bu hız belirleyici basamak kimyasal bir reaksiyon veya, enzim veya substratlarında konformasyonel bir değişim olabilir, ürünlerin enzimden salınması sırasında görüldüğü gibi.Enzimin yapısının bilinmesi kinetik verilerin yorumlanmasında faydalıdır. Örneğin, yapının bilinmesi sayesinde substrat ve ürünlerin kataliz sırasında nasıl bağlandıkları, reaksiyon sırasından hangi değişikliklerin meydana geldiği, ve hatta mekanizmadaki belli amino asit kalıntılarınını rolleri tahmin edilebilir. Bazı enzimler mekanizma sırasında önemli derecede biçimlerini değiştirirler; böylesi durumlarda enzimin tek başına yapısının ve enzimatik reaksiyona girmeyen substrat analogları ona bağlı ikenki yapısının belirlenmesi yararlı olur.Tüm biyolojik katalizörler protein değildir; ribozim ve ribozom gibi RNA-temelli katalizörler pek çok hücresel işlev için esastırlar, örneğin RNA uçbirleştirmesi (splicing) ve çeviri (translasyon) gibi. Ribozimler ve enzimler arasındaki temel fark, RNA katalizörlerin nükleotitlerden, enzimlerin ise amino asitlerden oluşmasıdır. Ribozimler daha sınırlı bir reaksiyonlar grubunu katalizler, ama reaksiyon mekanizmaları ve kinetikleri protein enzimleri ile aynı yöntemlerle analiz edilebilir ve sınıflandırılabilir.
  • Enzyme kinetics is the study of the chemical reactions that are catalysed by enzymes. In enzyme kinetics, the reaction rate is measured and the effects of varying the conditions of the reaction is investigated. Studying an enzyme's kinetics in this way can reveal the catalytic mechanism of this enzyme, its role in metabolism, how its activity is controlled, and how a drug or an agonist might inhibit the enzyme.Enzymes are usually protein molecules that manipulate other molecules — the enzymes' substrates. These target molecules bind to an enzyme's active site and are transformed into products through a series of steps known as the enzymatic mechanism. These mechanisms can be divided into single-substrate and multiple-substrate mechanisms. Kinetic studies on enzymes that only bind one substrate, such as triosephosphate isomerase, aim to measure the affinity with which the enzyme binds this substrate and the turnover rate. Some other examples of enzymes are phosphofructokinase and hexokinase, both of which are important for cellular respiration (glycolysis).When enzymes bind multiple substrates, such as dihydrofolate reductase (shown right), enzyme kinetics can also show the sequence in which these substrates bind and the sequence in which products are released. An example of enzymes that bind a single substrate and release multiple products are proteases, which cleave one protein substrate into two polypeptide products. Others join two substrates together, such as DNA polymerase linking a nucleotide to DNA. Although these mechanisms are often a complex series of steps, there is typically one rate-determining step that determines the overall kinetics. This rate-determining step may be a chemical reaction or a conformational change of the enzyme or substrates, such as those involved in the release of product(s) from the enzyme.Knowledge of the enzyme's structure is helpful in interpreting kinetic data. For example, the structure can suggest how substrates and products bind during catalysis; what changes occur during the reaction; and even the role of particular amino acid residues in the mechanism. Some enzymes change shape significantly during the mechanism; in such cases, it is helpful to determine the enzyme structure with and without bound substrate analogues that do not undergo the enzymatic reaction.Not all biological catalysts are protein enzymes; RNA-based catalysts such as ribozymes and ribosomes are essential to many cellular functions, such as RNA splicing and translation. The main difference between ribozymes and enzymes is that RNA catalysts are composed of nucleotides, whereas enzymes are composed of amino acids. Ribozymes also perform a more limited set of reactions, although their reaction mechanisms and kinetics can be analysed and classified by the same methods.
  • Entzimen zinetikak entzimek katalizatzen dituzten erreakzio biokimikoen abiadura aztertzen du. Jakina denez, entzimek erreakzio horien abiadura areagotzen dute substratuen aktibazio-energia jaisten dutelako. Aktibazio-energia erreakzionatuko duten molekulei beren lotura kimikoak apurtzeko eman behar zaien energiari deritzo. Lotura kimikoen arabera aldatzen du aipatutako aktibazio-energiak: lotura ioniko batean energia hori oso txikia da (ClNa, esaterako, erraz disoziatzen da Na+ eta Cl--an). Lotura kobalente bat apurtzeko, aldiz, aktibazio-energia askoz handiagoa da. Entzimen zinetikak eskuineko irudian agertzen den mota horretako grafikoa osatzen du. Ikusten denez, entzimaren kontzentrazioa konstantea bada, substratuaren kontzentrazioa handitu ahala erreakzio biokimikoaren abiadura areagotzen da, harik eta substratu-kontzentrazio jakin bateraino iritsi arte. Gero abiadura gelditzen da entzimaren asetasuna gertatzen delako: ez dago nahiko entzimarik gehiegizko substratu horrekin erreakzionatzeko, entzima/substratu konplexua (ES) sortzeko.Substratuaren kontzentrazioa oso handia denean entzimak asetu ohi dira. Entzima guztien gune aktiboak substratuz beteta daudenez, ez dira ES konplexu gehiago sortuko, eta beraz ez da produktu gehiago agertuko. Substratu molekulek entzima molekula guztiak hartu dituztenean erreakzioaren abiadura maximoa lortzen da, eta abiadura hori ez da gaindituko ezta substratu molekula gehiago gehituta ere.
dbpedia-owl:thumbnail
dbpedia-owl:wikiPageID
  • 1153518 (xsd:integer)
dbpedia-owl:wikiPageLength
  • 11957 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 54 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 109434129 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • La cinétique enzymatique a pour objet d'identifier et de décrire les mécanismes des réactions biochimiques, catalysées par les enzymes (réaction enzymatique), en étudiant leur vitesse c'est-à-dire leur évolution en fonction du temps.
  • 酵素反応速度論 (こうそはんのうそくどろん) とは酵素によって触媒される化学反応を反応速度の面から研究する学問。酵素の反応速度論を研究することで、酵素反応の機構、代謝における役割、活性調節の仕組み、薬物や毒が酵素をどう阻害するかといったことを明らかにできる。酵素は通常蛋白質分子であり、他の分子 (酵素の基質という) に作用する。基質は、酵素の活性部位に結合し、段階的に生成物へと変化を遂げる。この過程は、反応機構と呼ばれる。反応機構は、単一基質機構と、複数基質機構に分類できる。一つの基質としか結合しない酵素、例えばトリオースリン酸イソメラーゼの研究では酵素が基質と結合する際の解離定数や回転率の測定を目指す。酵素が複数の基質と結合する場合、例えばジヒドロ葉酸還元酵素 (右図) では、基質が結合し、生成物が解離する順序を明らかにすることもできる。1つの基質と結合し、複数の生成物を放出する酵素の例としてプロテアーゼ が挙げられる。この酵素は1つの基質蛋白質を切断して、2つのポリペプチドにする。2つの基質を1つに結合する酵素もある。DNAポリメラーゼはヌクレオチドをDNAに結合する。これらの酵素の反応機構は複雑で何段階にも及ぶことが多いが、通常律速段階があって、これが全体の反応速度を決定する。律速段階は化学反応であったり、(生成物が酵素から離れる際など) 酵素や基質のコンフォメーションの変化であったりする。酵素の立体構造が分かると、速度論的な情報の解釈に有利である。例えば構造から触媒過程で基質や生成物がどのように結合しているか、反応中にどう変化するかが分かる。また、特定のアミノ酸残基が反応機構で果たす役割が分かることもある。酵素によっては反応中に構造が大きく変化するものがあるが、このような場合は酵素の構造を触媒を受けない基質類似体が結合した場合と、結合していない場合それぞれで決定しておくとよい。生体で触媒として働くのは蛋白質でできた酵素だけではない。RNAによる触媒、つまりリボソームのようなリボザイムは、RNAスプライシングや翻訳といった多くの過程で不可欠である。リボザイムと酵素の主要な違いは、RNAのほうが触媒できる反応が限られているということだ。もっとも、RNAによる触媒の機構も、蛋白質酵素の場合と同じ方法で解析し、分類することができる。
  • A cinética enzimática estuda as reacções químicas catalisadas pelas enzimas, em especial a velocidade de reacção. O estudo da cinética de uma enzima permite elucidar os pormenores do seu mecanismo catalítico, o seu papel no metabolismo, como é controlada a sua actividade na célula e como pode ser inibida a sua actividade por drogas ou venenos, ou potenciada por outro tipo de moléculas.
  • La cinética enzimática estudia la velocidad de las reacciones químicas que son catalizadas por las enzimas.
  • Entzimen zinetikak entzimek katalizatzen dituzten erreakzio biokimikoen abiadura aztertzen du. Jakina denez, entzimek erreakzio horien abiadura areagotzen dute substratuen aktibazio-energia jaisten dutelako. Aktibazio-energia erreakzionatuko duten molekulei beren lotura kimikoak apurtzeko eman behar zaien energiari deritzo. Lotura kimikoen arabera aldatzen du aipatutako aktibazio-energiak: lotura ioniko batean energia hori oso txikia da (ClNa, esaterako, erraz disoziatzen da Na+ eta Cl--an).
  • Enzim kinetiği enzimler tarafından katalizlenen kimyasal reaksiyonların bilmidir. Enzim kinetiğinde reaksiyon hızı ölçülür ve reaksiyon şartlarını değiştirmenin etkisi araştırılır. Bir enzimin kinetiğinin bu şekilde çalışılması enzimin katalitik mekanizmasını, metabolizmadaki rolünü, aktivitesinin nasıl kontrol edildiğini ve bir ilaç veya zehrin enzimi nasıl inhibe edebileceğini ortaya koyabilir.Enzimler genelde diğer molekülleri (enzimin substratları) manipüle eden protein molekülleridir.
  • Die Enzymkinetik ist ein Teilgebiet der biophysikalischen Chemie. Sie beschreibt, wie schnell enzymkatalysierte chemische Reaktionen verlaufen.
  • La cinètica enzimàtica estudia la velocitat de les reaccions químiques que són catalitzades pels enzims. L'estudi de la cinètica d'un enzim permetrà elucidar els detalls del seu mecanisme catalític, el seu paper en el metabolisme, com es controla la seva activitat en la cèl·lula i com pot ser inhibida la seva activitat amb fàrmacs o verins o potenciada per altre tipus de molècules.Els enzims són macromolècules amb la capacitat de manipular altres molècules, denominades substrats.
  • Enzyme kinetics is the study of the chemical reactions that are catalysed by enzymes. In enzyme kinetics, the reaction rate is measured and the effects of varying the conditions of the reaction is investigated.
rdfs:label
  • Cinétique enzymatique
  • Cinètica enzimàtica
  • Cinética enzimática
  • Cinética enzimática
  • Entzimen zinetika
  • Enzim kinetiği
  • Enzyme kinetics
  • Enzymkinetik
  • 酵素反応速度論
owl:sameAs
http://www.w3.org/ns/prov#wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbpedia-owl:wikiPageRedirects of
is dbpedia-owl:wikiPageWikiLink of
is foaf:primaryTopic of