자기장(磁氣場, magnetic field)이란 자기력을 매개하는 벡터장이다. 고전적으로는 움직이는 전하, 즉 전류에 의하여 발생하나, 양자역학에서는 입자 고유의 스핀도 전류와 같은 역할을 할 수 있다. (이에 따라 강자성체가 영구자성을 가질 수 있다.) 자기장의 방향은 자기장 안에 있는 나침반이 가리키는 방향과 같다.

PropertyValue
dbpedia-owl:abstract
  • 자기장(磁氣場, magnetic field)이란 자기력을 매개하는 벡터장이다. 고전적으로는 움직이는 전하, 즉 전류에 의하여 발생하나, 양자역학에서는 입자 고유의 스핀도 전류와 같은 역할을 할 수 있다. (이에 따라 강자성체가 영구자성을 가질 수 있다.) 자기장의 방향은 자기장 안에 있는 나침반이 가리키는 방향과 같다.
  • A magnetic field is the magnetic influence of electric currents and magnetic materials. The magnetic field at any given point is specified by both a direction and a magnitude (or strength); as such it is a vector field. The term is used for two distinct but closely related fields denoted by the symbols B and H, which are measured in units of tesla and amp per meter respectively in the SI. B is most commonly defined in terms of the Lorentz force it exerts on moving electric charges.Magnetic fields are produced by moving electric charges and the intrinsic magnetic moments of elementary particles associated with a fundamental quantum property, their spin. In special relativity, electric and magnetic fields are two interrelated aspects of a single object, called the electromagnetic tensor; the split of this tensor into electric and magnetic fields depends on the relative velocity of the observer and charge. In quantum physics, the electromagnetic field is quantized and electromagnetic interactions result from the exchange of photons.In everyday life, magnetic fields are most often encountered as an invisible force created by permanent magnets which pull on ferromagnetic materials such as iron, cobalt or nickel and attract or repel other magnets. Magnetic fields are very widely used throughout modern technology, particularly in electrical engineering and electromechanics. The Earth produces its own magnetic field, which is important in navigation. Rotating magnetic fields are used in both electric motors and generators. Magnetic forces give information about the charge carriers in a material through the Hall effect. The interaction of magnetic fields in electric devices such as transformers is studied in the discipline of magnetic circuits.
  • En física, el camp magnètic és una entitat física generada per la presència de càrregues elèctriques en moviment (com ara els corrents elèctrics), o bé per la presència de partícules quàntiques amb espín, i que exerceixen una força sobre les altres càrregues que es mouen sota la seva influència. Els camps magnètics envolten els corrents elèctrics, els dipols i els camps elèctrics variables.Quan els dipols són dintre del radi d'acció d'un camp magnètic, els dipols magnètics s'alineen de manera que els seus eixos siguin paral·lels a les línies de camp, de la mateixa manera que ho farien les llimadures de ferro en presència d'un imant (vegeu la imatge de la dreta). Els camps magnètics també tenen la seva pròpia energia, amb una densitat d'energia proporcional al quadrat de la intensitat de camp. Al Sistema Internacional d'unitats el camp magnètic es mesura en tesles. Hi ha tota una sèrie de fenòmens on es manifesten els camps magnètics. Per a la física dels materials magnètics vegeu: magnetisme, imant, ferromagnetisme, paramagnetisme i diamagnetisme. Per als creats pels dipols estacionaris i els corrents elèctrics constants vegeu: Corrent elèctric i magnetostàtica. Per als camps magnètics creats per corrents elèctrics variables vegeu: electromagnetisme.El camp elèctric i el camp magnètic són estretament relacionats en dos sentits: primer, els canvis en qualsevol dels dos camps poden causar, induir, canvis a l'altre d'acord amb les equacions de Maxwell; segon, d'acord amb la teoria de la relativitat especial d'Einstein, una força magnètica a un sistema inercial de referència pot ser una força elèctrica a un altre sistema de referència i viceversa (vegeu electromagnetisme relativista). Tots dos camps junts formen el camp electromagnètic, que és conegut per ser darrere de fenòmens com la llum i altres ones electromagnètiques.
  • 磁場(じば、英語: Magnetic field)は、電気的現象・磁気的現象を記述するための物理的概念である。工学分野では、磁界(じかい)ということもある。単に磁場と言った場合は磁束密度Bもしくは、「磁場の強さ」Hのどちらかを指すものとして用いられるが、どちらを指しているのかは文脈により、また、どちらの解釈としても問題ない場合も多い。後述のとおりBとHは一定の関係にあるが、BとHの単位は国際単位系(SI)でそれぞれWb/m², A/m であり、次元も異なる独立した二つの物理量である。Hの単位はN/Wbで表すこともある。なお、CGS単位系における、磁場(の強さ)Hの単位は、Oeである。この項では一般的な磁場の性質、及び‘ H ’を扱うこととする。磁場は、空間の各点で向きと大きさを持つ物理量(ベクトル場)であり、電場の時間的変化または電流によって形成される。磁場の大きさは、+1のN極が受ける力の大きさで表される。磁場を図示する場合、N極からS極向きに磁力線の矢印を描く。小学校などの理科の授業では、砂鉄が磁石の周りを囲むように引きつけられる現象をもって、磁場の存在を教える。このことから、磁場の影響を受けるのは鉄だけであると思われがちだが、強力な磁場の中では、様々な物質が影響を受ける。最近では、磁場や電場(電磁場、電磁波)が生物に与える影響について関心が寄せられている。
  • Pole magnetyczne – stan przestrzeni, w której siły działają na poruszające się ładunki elektryczne, a także na ciała mające moment magnetyczny niezależnie od ich ruchu. Pole magnetyczne, obok pola elektrycznego, jest przejawem pola elektromagnetycznego. W zależności od układu odniesienia, w jakim znajduje się obserwator, to samo zjawisko może być opisywane jako objaw pola elektrycznego, magnetycznego albo obu.
  • Un campo magnético es una descripción matemática de la influencia magnética de las corrientes eléctricas y de los materiales magnéticos. El campo magnético en cualquier punto está especificado por dos valores, la dirección y la magnitud; de tal forma que es un campo vectorial. Específicamente, el campo magnético es un vector axial, como lo son los momentos mecánicos y los campos rotacionales. El campo magnético es más comúnmente definido en términos de la fuerza de Lorentz ejercida en cargas eléctricas. Campo magnético puede referirse a dos separados pero muy relacionados símbolos B y H.Los campos magnéticos son producidos por cualquier carga eléctrica en movimiento y el momento magnético intrínseco de las partículas elementales asociadas con una propiedad cuántica fundamental, su espin. En la relatividad especial, campos eléctricos y magnéticos son dos aspectos interrelacionados de un objeto, llamado el tensor electromagnético. Las fuerzas magnéticas dan información sobre la carga que lleva un material a través del efecto Hall. La interacción de los campos magnéticos en dispositivos eléctricos tales como transformadores es estudiada en la disciplina de circuitos magnéticos.
  • Medan magnet, dalam ilmu Fisika, adalah suatu medan yang dibentuk dengan menggerakan muatan listrik (arus listrik) yang menyebabkan munculnya gaya di muatan listrik yang bergerak lainnya. (Putaran mekanika kuantum dari satu partikel membentuk medan magnet dan putaran itu dipengaruhi oleh dirinya sendiri seperti arus listrik; inilah yang menyebabkan medan magnet dari ferromagnet "permanen"). Sebuah medan magnet adalah medan vektor: yaitu berhubungan dengan setiap titik dalam ruang vektor yang dapat berubah menurut waktu. Arah dari medan ini adalah seimbang dengan arah jarum kompas yang diletakkan di dalam medan tersebut.
  • A mágneses mező (másként mágneses tér) mágneses erőtér. Mozgó elektromos töltés (elektromos áram) vagy az elektromos mező változása hozhatja létre. A mágneses mezőt jellemző fizikai mennyiség a mágneses fluxussűrűség, mértékegysége a tesla (Vs / m2).
  • Magnetické pole je fyzikální pole, jehož zdrojem je pohybující se elektrický náboj (tedy elektrický proud). Magnetické pole lze tedy pozorovat kolem elektrických vodičů, kde je zdrojem volný elektrický proud, ale také kolem tzv. permanentních magnetů, kde jsou zdrojem pole vázané elektrické proudy. Magnetické pole může být také vyvoláno změnami elektrického pole.Magnetické pole je částí elektromagnetického pole. Vztah mezi magnetickým a elektrickým polem popisují Maxwellovy rovnice.
  • In fisica, in particolare nel magnetismo, il campo magnetico è un campo vettoriale solenoidale generato nello spazio dal moto di una carica elettrica o da un campo elettrico variabile nel tempo. Insieme al campo elettrico esso costituisce il campo elettromagnetico, responsabile dell'interazione elettromagnetica.
  • Магнитното поле е силово поле, което се създава от частици с ненулев магнитен момент (например от магнитния момент на електроните в атомите на постоянен магнит) или от промяната във времето на електрическото поле. То е един от двата компонента на електромагнитното поле. Основните му характеристики са неговата сила и посока, определяни от вектора на магнитната индукция, т.е. това е векторно поле. В система единици SI силата на магнитното поле се измерва в тесла (означение Т).Комплексното математическо описание на магнитното поле на даден обект обикновено се представя чрез магнитни линии. Тези така наречени линии са чисто математическа абстракция и не съществуват физически, но са добро средство за илюстрация. Например, разпръснат железен прах в близост до магнит, образува фигури, подобни на въображаемите линии и дава представа за тяхното разположение.Два магнита упражняват сила един върху друг чрез магнитните полета, които създават. Електрическият ток (и по принцип движението на заредени частици) също създава магнитно поле. Магнитното поле на постоянен магнит съществува предимно благодарение на електрони, несвързани в двойки. За да се създаде магнитно поле, е необходима енергия, която се освобождава, когато полето се разруши. Електричните и магнитните полета са неразривно свързани — промяната в електрическото поле създава магнитно поле и промяната в магнитното поле създава електрическо поле.Това се описва от уравненията на Максуел. От гледна точка на специалната теория на относителността тези две полета са всъщност различна проява на един и същ обект — електромагнитното поле. От гледна точка на квантовата механика това електромагнитно поле се създава от виртуални фотони. В някои прости случаи полето може да се определи по закона на Био-Савар или от теоремата за циркулацията (наричана също закон на Ампер). В по-сложни случаи се дефинира като решение на уравненията на Максуел.Магнитното поле се проявява чрез въздействието му върху магнитните моменти на частиците и върху движещи се електрически заредени частици (например проводник, по който тече електрически ток). Силата, действаща върху движеща се в магнитно поле заредена частица се нарича сила на Лоренц. Тя е пропорционална на заряда на частицата и на векторното произведение на полето и скоростта на движение на частицата.Магнитните полета намират широка употреба от хората още от дълбока древност. Земята има свое магнитно поле, което е важно за навигацията. Северният полюс на компасите всъщност сочи към южния магнитен полюс на земята, който се намира в близост до северния географски полюс. Днес магнитните полета се използват в електрически мотори, трансформатори, генератори и много други електрически уреди.
  • Campos magnéticos cercam materiais em correntes elétricas e são detectados pela força que exercem sobre outros materiais magnéticos e cargas elétricas em movimento. O campo magnético em qualquer lugar possui tanto uma direção quanto uma magnitude (ou força), por tanto é um campo vetorial.Para a física dos materiais magnéticos, veja magnetismo e magneto, mais especificamente ferromagnetismo, paramagnetismo e diamagnetismo. Para campos magnéticos constantes, como os gerados por materiais magnéticos e correntes contínuas, veja magnetoestática. Um campo magnético variável gera um campo elétrico e um campo elétrico variável resulta em um campo magnético (veja eletromagnetismo).À luz da relatividade especial, os campos elétrico e magnético são dois aspectos inter-relacionados de um mesmo objeto, chamado de campo eletromagnético. Um campo elétrico puro em um sistema de referência é observado como uma combinação de um campo elétrico e um campo magnético em um sistema de referência em movimento em relação ao primeiro.Na física moderna, o campo magnético e o campo elétrico são entendidos como sendo um campo fotônico. Na linguagem do Modelo Padrão a força magnética é mediada por fótons. Frequentemente esta descrição microscópica não é necessária por que a teoria clássica, mais simples e coberta neste artigo, é suficiente. A diferença é desprezível na maioria das circunstâncias.
dbpedia-owl:thumbnail
dbpedia-owl:wikiPageExternalLink
dbpedia-owl:wikiPageID
  • 7670 (xsd:integer)
dbpedia-owl:wikiPageLength
  • 81731 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 507 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 110601901 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
prop-fr:autresUnités
prop-fr:commons
  • Earth's magnetic field
prop-fr:commonsTitre
  • Champ magnétique terrestre
prop-fr:date
  • 2007-06-05 (xsd:date)
prop-fr:dimension
  • M.T -2.I-1
prop-fr:légende
  • Visualisation du champ magnétique créé par un aimant droit.
prop-fr:nature
  • vecteur
prop-fr:nom
  • Champ magnétique
prop-fr:oldid
  • 17501244 (xsd:integer)
prop-fr:unités
prop-fr:unitésDeBase
  • kg·s·A
prop-fr:vote
  • BA
prop-fr:wikiPageUsesTemplate
prop-fr:wikinews
  • Première mesure du champ magnétique d'une étoile à exoplanète
prop-fr:wikinewsTitre
  • Première mesure du champ magnétique d'une étoile à exoplanète
  • Première mesure du champ magnétique d'une étoile à exoplanète
dcterms:subject
rdfs:comment
  • 자기장(磁氣場, magnetic field)이란 자기력을 매개하는 벡터장이다. 고전적으로는 움직이는 전하, 즉 전류에 의하여 발생하나, 양자역학에서는 입자 고유의 스핀도 전류와 같은 역할을 할 수 있다. (이에 따라 강자성체가 영구자성을 가질 수 있다.) 자기장의 방향은 자기장 안에 있는 나침반이 가리키는 방향과 같다.
  • 磁場(じば、英語: Magnetic field)は、電気的現象・磁気的現象を記述するための物理的概念である。工学分野では、磁界(じかい)ということもある。単に磁場と言った場合は磁束密度Bもしくは、「磁場の強さ」Hのどちらかを指すものとして用いられるが、どちらを指しているのかは文脈により、また、どちらの解釈としても問題ない場合も多い。後述のとおりBとHは一定の関係にあるが、BとHの単位は国際単位系(SI)でそれぞれWb/m², A/m であり、次元も異なる独立した二つの物理量である。Hの単位はN/Wbで表すこともある。なお、CGS単位系における、磁場(の強さ)Hの単位は、Oeである。この項では一般的な磁場の性質、及び‘ H ’を扱うこととする。磁場は、空間の各点で向きと大きさを持つ物理量(ベクトル場)であり、電場の時間的変化または電流によって形成される。磁場の大きさは、+1のN極が受ける力の大きさで表される。磁場を図示する場合、N極からS極向きに磁力線の矢印を描く。小学校などの理科の授業では、砂鉄が磁石の周りを囲むように引きつけられる現象をもって、磁場の存在を教える。このことから、磁場の影響を受けるのは鉄だけであると思われがちだが、強力な磁場の中では、様々な物質が影響を受ける。最近では、磁場や電場(電磁場、電磁波)が生物に与える影響について関心が寄せられている。
  • Pole magnetyczne – stan przestrzeni, w której siły działają na poruszające się ładunki elektryczne, a także na ciała mające moment magnetyczny niezależnie od ich ruchu. Pole magnetyczne, obok pola elektrycznego, jest przejawem pola elektromagnetycznego. W zależności od układu odniesienia, w jakim znajduje się obserwator, to samo zjawisko może być opisywane jako objaw pola elektrycznego, magnetycznego albo obu.
  • A mágneses mező (másként mágneses tér) mágneses erőtér. Mozgó elektromos töltés (elektromos áram) vagy az elektromos mező változása hozhatja létre. A mágneses mezőt jellemző fizikai mennyiség a mágneses fluxussűrűség, mértékegysége a tesla (Vs / m2).
  • Magnetické pole je fyzikální pole, jehož zdrojem je pohybující se elektrický náboj (tedy elektrický proud). Magnetické pole lze tedy pozorovat kolem elektrických vodičů, kde je zdrojem volný elektrický proud, ale také kolem tzv. permanentních magnetů, kde jsou zdrojem pole vázané elektrické proudy. Magnetické pole může být také vyvoláno změnami elektrického pole.Magnetické pole je částí elektromagnetického pole. Vztah mezi magnetickým a elektrickým polem popisují Maxwellovy rovnice.
  • In fisica, in particolare nel magnetismo, il campo magnetico è un campo vettoriale solenoidale generato nello spazio dal moto di una carica elettrica o da un campo elettrico variabile nel tempo. Insieme al campo elettrico esso costituisce il campo elettromagnetico, responsabile dell'interazione elettromagnetica.
  • Магнитното поле е силово поле, което се създава от частици с ненулев магнитен момент (например от магнитния момент на електроните в атомите на постоянен магнит) или от промяната във времето на електрическото поле. То е един от двата компонента на електромагнитното поле. Основните му характеристики са неговата сила и посока, определяни от вектора на магнитната индукция, т.е. това е векторно поле.
  • A magnetic field is the magnetic influence of electric currents and magnetic materials. The magnetic field at any given point is specified by both a direction and a magnitude (or strength); as such it is a vector field. The term is used for two distinct but closely related fields denoted by the symbols B and H, which are measured in units of tesla and amp per meter respectively in the SI.
  • Campos magnéticos cercam materiais em correntes elétricas e são detectados pela força que exercem sobre outros materiais magnéticos e cargas elétricas em movimento. O campo magnético em qualquer lugar possui tanto uma direção quanto uma magnitude (ou força), por tanto é um campo vetorial.Para a física dos materiais magnéticos, veja magnetismo e magneto, mais especificamente ferromagnetismo, paramagnetismo e diamagnetismo.
  • Un campo magnético es una descripción matemática de la influencia magnética de las corrientes eléctricas y de los materiales magnéticos. El campo magnético en cualquier punto está especificado por dos valores, la dirección y la magnitud; de tal forma que es un campo vectorial. Específicamente, el campo magnético es un vector axial, como lo son los momentos mecánicos y los campos rotacionales.
  • Medan magnet, dalam ilmu Fisika, adalah suatu medan yang dibentuk dengan menggerakan muatan listrik (arus listrik) yang menyebabkan munculnya gaya di muatan listrik yang bergerak lainnya. (Putaran mekanika kuantum dari satu partikel membentuk medan magnet dan putaran itu dipengaruhi oleh dirinya sendiri seperti arus listrik; inilah yang menyebabkan medan magnet dari ferromagnet "permanen").
  • En física, el camp magnètic és una entitat física generada per la presència de càrregues elèctriques en moviment (com ara els corrents elèctrics), o bé per la presència de partícules quàntiques amb espín, i que exerceixen una força sobre les altres càrregues que es mouen sota la seva influència.
rdfs:label
  • Champ magnétique
  • Camp magnètic
  • Campo magnetico
  • Campo magnético
  • Campo magnético
  • Magnetfeld
  • Magnetic field
  • Magnetické pole
  • Magnetisch veld
  • Manyetik alan
  • Medan magnet
  • Mágneses mező
  • Pole magnetyczne
  • Магнитно поле
  • Магнитное поле
  • 磁場
  • 자기장
owl:sameAs
http://www.w3.org/ns/prov#wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbpedia-owl:knownFor of
is dbpedia-owl:wikiPageDisambiguates of
is dbpedia-owl:wikiPageRedirects of
is dbpedia-owl:wikiPageWikiLink of
is prop-fr:quantité of
is foaf:primaryTopic of