Le calcul infinitésimal (ou calcul différentiel et intégral) est une branche des mathématiques, développée à partir de l'algèbre et de la géométrie, qui implique deux idées majeures complémentaires : La notion de différentielle, qui établit une relation entre les variations de plusieurs fonctions, ainsi que la notion de dérivées. La vitesse, l'accélération, et les pentes des courbes des fonctions mathématiques en un point donné peuvent toutes être décrites sur une base symbolique commune.

PropertyValue
dbpedia-owl:abstract
  • Le calcul infinitésimal (ou calcul différentiel et intégral) est une branche des mathématiques, développée à partir de l'algèbre et de la géométrie, qui implique deux idées majeures complémentaires : La notion de différentielle, qui établit une relation entre les variations de plusieurs fonctions, ainsi que la notion de dérivées. La vitesse, l'accélération, et les pentes des courbes des fonctions mathématiques en un point donné peuvent toutes être décrites sur une base symbolique commune. Le calcul intégral, qui développe l'idée d'intégration, fait intervenir le concept d'aire sous-tendue par le graphe d'une fonction et inclut des notions connexes comme le volume.Ces deux concepts définissent des opérations inverses au sens précis défini par les théorèmes fondamentaux du calcul infinitésimal. Ceci veut dire qu'ils ont une priorité équivalente. Cependant l'approche pédagogique habituelle commence par le calcul différentiel.
  • 미적분학(微積分學, calculus)은 수학의 한 분야로 극한, 함수, 미분, 적분, 무한급수를 다루는 학문이다. 기하학이 모양(Shape)에 중심을 둔 학문이고 대수학이 연산과 그 활용에 대한 학문이라면, 미적분학은 변화에 중점을 둔 학문이다. 미적분학은 크게 두 개의 분야로 분류되는데 미분학과 적분학이 바로 그것이다. 미분학은 국소적인 변화를 다루는 분야이고, 적분학은 국소적인 양의 집적을 다루는 분야이다.미분은 특정 함수의 어떤 지점에서의 접선, 혹은 접평면을 구하는 연산이다. 다시 말하면, 미분은 원래는 복잡한 함수를 선형근사하여 다루기 쉬운 형태로 바꾸어 파악하려는 것이다. 그렇기 때문에 미분은 선형사상이 된다. (단, 다변수 함수의 미분을 선형사상으로 취급하는 방식은 20세기에 들어서부터 확립됐다.) 미분방정식은 이런 사고의 자연스러운 연장선상에 있다.이에 대해 적분은 기하학적으로 보면, 곡선 또는 곡면과 좌표축으로 둘러싸인 영역의 면적을 구하는 것에 해당된다. 그러나 적분의 의미는 오랫동안 확실하게 파악되지 못하고 있었다. 적분의 확실한 정의를 내린 사람은 베른하르트 리만이 최초이다. 리만이 생각한 적분을 정식화한 것은 리만적분으로 불리고 있다.미분과 적분은 완전히 별개의 개념이지만, 밀접한 연관성을 갖는다. 변수가 하나인 경우 하나가 나머지의 역연산이 된다. 이를 미적분학의 기본정리라고 부른다.
  • Počet (latinsky a anglicky calculus) je ucelený a soustavně pojímaný obor vyšší matematiky, zejména integrální počet diferenciální počet tenzorový počet počet pravděpodobnostiBývá často zaměňován s blízkou matematickou analýzou.
  • Rachunek różniczkowy i całkowy – dział matematyki zajmujący się badaniem funkcji zmiennej rzeczywistej lub zespolonej w oparciu o podstawowe dla tej dyscypliny matematycznej pojęcia pochodnych i całek.Rachunek różniczkowy jest jednym z podstawowych narzędzi matematycznych fizyki i techniki.
  • En general el término cálculo (del latín calculus = piedra) hace referencia al resultado correspondiente a la acción de calcular o contar. Calcular, por su parte, consiste en realizar las operaciones necesarias para prever el resultado de una acción previamente concebida, o conocer las consecuencias que se pueden derivar de unos datos previamente conocidos.No obstante, el uso más común del término cálculo es el lógico-matemático. Desde esta perspectiva, el cálculo consiste en un procedimiento mecánico, o algoritmo, mediante el cual podemos conocer las consecuencias que se derivan de unos datos previamente conocidos debidamente formalizados y simbolizados.
  • O Cálculo Diferencial e Integral, também chamado de cálculo infinitesimal, ou simplesmente Cálculo, é um ramo importante da matemática, desenvolvido a partir da Álgebra e da Geometria, que se dedica ao estudo de taxas de variação de grandezas (como a inclinação de uma reta) e a acumulação de quantidades (como a área debaixo de uma curva ou o volume de um sólido). Onde há movimento ou crescimento e onde forças variáveis agem produzindo aceleração, o cálculo é a matemática a ser empregada.O cálculo foi criado como uma ferramenta auxiliar em várias áreas das ciências exatas. Desenvolvido por Isaac Newton (1643-1727) e Gottfried Wilhelm Leibniz (1646-1716), em trabalhos independentes. O Cálculo auxilia em vários conceitos e definições na matemática, química, física clássica, física moderna e economia. O estudante de cálculo deve ter um conhecimento em certas áreas da matemática, como funções, geometria e trigonometria, pois são a base do cálculo. O cálculo tem inicialmente três "operações-base", ou seja, possui áreas iniciais como o cálculo de limites, o cálculo de derivadas de funções e a integral de diferenciais.A integral indefinida também pode ser chamada de antiderivada, uma vez que é um processo que inverte a derivada de funções. Já a integral definida, inicialmente definida como Soma de Riemann, estabelece limites de integração, ou seja, é um processo estabelecido entre dois intervalos bem definidos, daí o nome integral definida.Com o advento do "Teorema Fundamental do Cálculo" estabeleceu-se uma conexão entre os dois ramos do cálculo: o Cálculo Diferencial e o Cálculo Integral. O cálculo diferencial surgiu do problema da tangente, enquanto o cálculo integral surgiu de um problema aparentemente não relacionado, o problema da área. O professor de Isaac Newton em Cambridge, Isaac Barrow, descobriu que esses dois problemas estão de fato estritamente relacionados, ao perceber que a derivação e a integração são processos inversos. Foram Leibniz e Newton que exploraram essa relação e a utilizaram para transformar o cálculo em um método matemático sistemático. Particularmente ambos viram que o Teorema Fundamental os capacitou a calcular áreas e integrais muito mais facilmente, sem que fosse necessário calculá-las como limites de soma (método descrito pelo matemático Riemann, pupilo de Gauss).
  • 微分積分学(びぶんせきぶんがく, calculus)とは、解析学の基本的な部分を形成する数学の一分野である。微分積分学は、局所的な変化を捉える微分と局所的な量の大域的な集積を扱う積分の二本の柱からなり、分野としての範囲を確定するのは難しいが、大体多変数実数値関数の微分と積分に関わる事柄(逆関数定理やベクトル解析も)を含んでいる。微分は、ある関数のある点での接線、或いは接平面を考える演算である。数学的に別の言い方をすると、基本的には複雑な関数を線型近似して捉えようとする考え方である。従って、微分は線型写像になる。(但し多変数関数の微分を線型写像として捉える考え方は 20世紀に入ってからのものである)。微分方程式はこの考え方の自然な延長にある。対して積分は、幾何学的には、曲線、あるいは曲面と座標軸とに挟まれた領域の面積(体積)を求めることに相当している。ベルンハルト・リーマンは(一変数の)定積分の値を、長方形近似の極限として直接的に定義し、連続関数は積分を有することなどを証明した。彼の定義による積分をリーマン積分と呼んでいる。微分と積分はまったく別の概念でありながら密接な関連性を持ち、一変数の場合、互いに他の逆演算としての意味を持っている。(微分積分学の基本定理)
  • Kalkülüs (Latince calculus saymak ya da hesap yapmak için kullanılan çakıl taşı anlamına gelir), matematiğin bir alt dalı olan matematiksel analizin giriş kısmıdır. Üniversite eğitiminde, özellikle mühendislik ve fen fakültesi öğrencilerine, ilk senede öğretilen dersin de adıdır. Fonksiyon, limit, türev, integral, diziler, seriler vb. konuları içerir. Kalkülüs, cebir, trigonometri ve analitik geometri konularının üzerine inşa edilmiştir.
  • Kalkulus (Bahasa Latin: calculus, artinya "batu kecil", untuk menghitung) adalah cabang ilmu matematika yang mencakup limit, turunan, integral, dan deret takterhingga. Kalkulus adalah ilmu yang mempelajari perubahan, sebagaimana geometri yang mempelajari bentuk dan aljabar yang mempelajari operasi dan penerapannya untuk memecahkan persamaan. Kalkulus memiliki aplikasi yang luas dalam bidang-bidang sains, ekonomi, dan teknik; serta dapat memecahkan berbagai masalah yang tidak dapat dipecahkan dengan aljabar elementer.Kalkulus memiliki dua cabang utama, kalkulus diferensial dan kalkulus integral yang saling berhubungan melalui teorema dasar kalkulus. Contoh cabang kalkulus yang lain adalah kalkulus proposisional, kalkulus variasi, kalkulus lambda, dan kalkulus proses. Pelajaran kalkulus adalah pintu gerbang menuju pelajaran matematika lainnya yang lebih tinggi, yang khusus mempelajari fungsi dan limit, yang secara umum dinamakan analisis matematika.
  • Calculus is the mathematical study of change, in the same way that geometry is the study of shape and algebra is the study of operations and their application to solving equations. It has two major branches, differential calculus (concerning rates of change and slopes of curves), and integral calculus (concerning accumulation of quantities and the areas under and between curves); these two branches are related to each other by the fundamental theorem of calculus. Both branches make use of the fundamental notions of convergence of infinite sequences and infinite series to a well-defined limit. Generally considered to have been founded in the 17th century by Isaac Newton and Gottfried Leibniz, today calculus has widespread uses in science, engineering and economics and can solve many problems that algebra alone cannot.Calculus is a part of modern mathematics education. A course in calculus is a gateway to other, more advanced courses in mathematics devoted to the study of functions and limits, broadly called mathematical analysis. Calculus has historically been called "the calculus of infinitesimals", or "infinitesimal calculus". The word "calculus" comes from Latin (calculus) and refers to a small stone used for counting. More generally, calculus (plural calculi) refers to any method or system of calculation guided by the symbolic manipulation of expressions. Some examples of other well-known calculi are propositional calculus, calculus of variations, lambda calculus, and process calculus.
dbpedia-owl:wikiPageExternalLink
dbpedia-owl:wikiPageID
  • 117541 (xsd:integer)
dbpedia-owl:wikiPageLength
  • 11233 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 88 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 111056539 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
prop-fr:wikiversity
  • Calcul différentiel
prop-fr:wikiversityTitre
  • Calcul différentiel
  • Calcul différentiel
dcterms:subject
rdfs:comment
  • Le calcul infinitésimal (ou calcul différentiel et intégral) est une branche des mathématiques, développée à partir de l'algèbre et de la géométrie, qui implique deux idées majeures complémentaires : La notion de différentielle, qui établit une relation entre les variations de plusieurs fonctions, ainsi que la notion de dérivées. La vitesse, l'accélération, et les pentes des courbes des fonctions mathématiques en un point donné peuvent toutes être décrites sur une base symbolique commune.
  • Počet (latinsky a anglicky calculus) je ucelený a soustavně pojímaný obor vyšší matematiky, zejména integrální počet diferenciální počet tenzorový počet počet pravděpodobnostiBývá často zaměňován s blízkou matematickou analýzou.
  • Rachunek różniczkowy i całkowy – dział matematyki zajmujący się badaniem funkcji zmiennej rzeczywistej lub zespolonej w oparciu o podstawowe dla tej dyscypliny matematycznej pojęcia pochodnych i całek.Rachunek różniczkowy jest jednym z podstawowych narzędzi matematycznych fizyki i techniki.
  • 微分積分学(びぶんせきぶんがく, calculus)とは、解析学の基本的な部分を形成する数学の一分野である。微分積分学は、局所的な変化を捉える微分と局所的な量の大域的な集積を扱う積分の二本の柱からなり、分野としての範囲を確定するのは難しいが、大体多変数実数値関数の微分と積分に関わる事柄(逆関数定理やベクトル解析も)を含んでいる。微分は、ある関数のある点での接線、或いは接平面を考える演算である。数学的に別の言い方をすると、基本的には複雑な関数を線型近似して捉えようとする考え方である。従って、微分は線型写像になる。(但し多変数関数の微分を線型写像として捉える考え方は 20世紀に入ってからのものである)。微分方程式はこの考え方の自然な延長にある。対して積分は、幾何学的には、曲線、あるいは曲面と座標軸とに挟まれた領域の面積(体積)を求めることに相当している。ベルンハルト・リーマンは(一変数の)定積分の値を、長方形近似の極限として直接的に定義し、連続関数は積分を有することなどを証明した。彼の定義による積分をリーマン積分と呼んでいる。微分と積分はまったく別の概念でありながら密接な関連性を持ち、一変数の場合、互いに他の逆演算としての意味を持っている。(微分積分学の基本定理)
  • Kalkülüs (Latince calculus saymak ya da hesap yapmak için kullanılan çakıl taşı anlamına gelir), matematiğin bir alt dalı olan matematiksel analizin giriş kısmıdır. Üniversite eğitiminde, özellikle mühendislik ve fen fakültesi öğrencilerine, ilk senede öğretilen dersin de adıdır. Fonksiyon, limit, türev, integral, diziler, seriler vb. konuları içerir. Kalkülüs, cebir, trigonometri ve analitik geometri konularının üzerine inşa edilmiştir.
  • Calculus is the mathematical study of change, in the same way that geometry is the study of shape and algebra is the study of operations and their application to solving equations. It has two major branches, differential calculus (concerning rates of change and slopes of curves), and integral calculus (concerning accumulation of quantities and the areas under and between curves); these two branches are related to each other by the fundamental theorem of calculus.
  • 미적분학(微積分學, calculus)은 수학의 한 분야로 극한, 함수, 미분, 적분, 무한급수를 다루는 학문이다. 기하학이 모양(Shape)에 중심을 둔 학문이고 대수학이 연산과 그 활용에 대한 학문이라면, 미적분학은 변화에 중점을 둔 학문이다. 미적분학은 크게 두 개의 분야로 분류되는데 미분학과 적분학이 바로 그것이다. 미분학은 국소적인 변화를 다루는 분야이고, 적분학은 국소적인 양의 집적을 다루는 분야이다.미분은 특정 함수의 어떤 지점에서의 접선, 혹은 접평면을 구하는 연산이다. 다시 말하면, 미분은 원래는 복잡한 함수를 선형근사하여 다루기 쉬운 형태로 바꾸어 파악하려는 것이다. 그렇기 때문에 미분은 선형사상이 된다. (단, 다변수 함수의 미분을 선형사상으로 취급하는 방식은 20세기에 들어서부터 확립됐다.) 미분방정식은 이런 사고의 자연스러운 연장선상에 있다.이에 대해 적분은 기하학적으로 보면, 곡선 또는 곡면과 좌표축으로 둘러싸인 영역의 면적을 구하는 것에 해당된다.
  • En general el término cálculo (del latín calculus = piedra) hace referencia al resultado correspondiente a la acción de calcular o contar. Calcular, por su parte, consiste en realizar las operaciones necesarias para prever el resultado de una acción previamente concebida, o conocer las consecuencias que se pueden derivar de unos datos previamente conocidos.No obstante, el uso más común del término cálculo es el lógico-matemático.
  • O Cálculo Diferencial e Integral, também chamado de cálculo infinitesimal, ou simplesmente Cálculo, é um ramo importante da matemática, desenvolvido a partir da Álgebra e da Geometria, que se dedica ao estudo de taxas de variação de grandezas (como a inclinação de uma reta) e a acumulação de quantidades (como a área debaixo de uma curva ou o volume de um sólido).
  • Kalkulus (Bahasa Latin: calculus, artinya "batu kecil", untuk menghitung) adalah cabang ilmu matematika yang mencakup limit, turunan, integral, dan deret takterhingga. Kalkulus adalah ilmu yang mempelajari perubahan, sebagaimana geometri yang mempelajari bentuk dan aljabar yang mempelajari operasi dan penerapannya untuk memecahkan persamaan.
rdfs:label
  • Calcul infinitésimal
  • Calculus
  • Cálculo
  • Cálculo
  • Kalkulus
  • Kalkülüs
  • Počet
  • Rachunek różniczkowy i całkowy
  • 微分積分学
  • 미적분학
owl:sameAs
http://www.w3.org/ns/prov#wasDerivedFrom
foaf:isPrimaryTopicOf
is dbpedia-owl:domain of
is dbpedia-owl:knownFor of
is dbpedia-owl:notableIdea of
is dbpedia-owl:wikiPageDisambiguates of
is dbpedia-owl:wikiPageRedirects of
is dbpedia-owl:wikiPageWikiLink of
is prop-fr:champs of
is prop-fr:renomméPour of
is foaf:primaryTopic of