En mathématiques, une fonction càdlàg (continue à droite, limite à gauche) est une fonction définie sur un ensemble E de nombres réels qui est continue à droite en tout point de E et admet une limite à gauche en tout point de E. Les fonctions càdlàg sont importantes dans l'étude des processus stochastiques qui sont notamment des processus à sauts. L'ensemble des fonctions càdlàg est appelé l'espace de Skorokhod.Il est à noter que la notation càdlàg est utilisée internationalement.

PropertyValue
dbpedia-owl:abstract
  • En mathématiques, une fonction càdlàg (continue à droite, limite à gauche) est une fonction définie sur un ensemble E de nombres réels qui est continue à droite en tout point de E et admet une limite à gauche en tout point de E. Les fonctions càdlàg sont importantes dans l'étude des processus stochastiques qui sont notamment des processus à sauts. L'ensemble des fonctions càdlàg est appelé l'espace de Skorokhod.Il est à noter que la notation càdlàg est utilisée internationalement. Il existe cependant la notation équivalente en anglais : RCLL (« right continuous with left limits »). Il existe également la notion de fonction càglàd (continue à gauche, limite à droite), qui est l'équivalent par une inversion gauche-droite.
  • Na matemática, uma função càdlàg (do francês "continue à droite, limite à gauche"), corlol (do inglês “continuous on (the) right, limit on (the) left”), ou càdlàe (continua à direita, limite à esquerda, tradução literal para português) é uma definida nos números reais (ou um sub-conjunto dos mesmos) que é, em qualquer localização, contínua à direita e com limite à esquerda. Funções cádlag são importantes no estudo de processos estocásticos que admitem (ou mesmo exigem) saltos, ao contrário do movimento browniano que se mantém em caminhos contínuos. O conjunto de funções cádlág num dado domínio é conhecido como o espaço de Skorokhod.Dois termos relacionados são cáglád, do frânces "continue à gauche, limite à droite", ou càelàd (o oposto do cádlág, contínua à esquerda, limite à direita), e càllàl de "continue à l'un, limite à l’autre" (contínua de um lado e limite do outro), para uma função que permanece càdlàg ou càglàd a cada ponto do seu domínio.
  • In matematica, una funzione càdlàg (acronimo dal francese continue à droite, limitée à gauche, che significa continua a destra, limitata a sinistra) o più semplicemente (ma erroneamente) cadlag è una funzione di variabile reale che sia in ogni punto continua da destra e possegga limite sinistro finito.Le funzioni càdlàg sono importanti nello studio dei processi stocastici che ammettono traiettorie con discontinuità di prima specie.
  • In mathematics, a càdlàg (French "continue à droite, limite à gauche"), RCLL (“right continuous with left limits”), or corlol (“continuous on (the) right, limit on (the) left”) function is a function defined on the real numbers (or a subset of them) that is everywhere right-continuous and has left limits everywhere. Càdlàg functions are important in the study of stochastic processes that admit (or even require) jumps, unlike Brownian motion, which has continuous sample paths. The collection of càdlàg functions on a given domain is known as Skorokhod space.Two related terms are càglàd, standing for "continue à gauche, limite à droite", the left-right reversal of càdlàg, and càllàl for"continue à l'un, limite à l’autre" (continuous on one side, limit on the other side), for a function which is interchangeably either càdlàg or càglàd at each point of the domain.
  • A matematikában a càdlàg (francia: "continue à droite, limitée à gauche" kifejezés), RCLL (angol: "right continous with left limits") vagy corlol ("continous on (the) right, limit on (the) left") mind az olyan valós számokon (vagy azok egy részhalmazán) értelmezett folytonos függvények jelölésére szolgáló rövidítés, amelyek az értelmezési tartományuk valamennyi pontjában jobbról folytonosak és ugyanitt létezik a bal oldali határértékük. A kifejezés elterjedt a matematikai függvénykalkulus területén és nem szokás magyar megfelelővel helyettesíteni Sablon:Forrás?. olykor az egyszerűség kedvéért az eredeti càdlàg írásmód helyett az ékezetek nélküli cadlag kifejezést használják a magyar irodalmakban. A càdlàg függvények az olyan sztochasztikus folyamatok tanulmányozásában töltenek be fontos szerepet, melyekben elfogadott (néha követelmény) ugrások jelenléte, nem úgy mint pl. a Brown-mozgás esetén, amelynek pályái folytonosak. Egy adott tartományon értelmezett càdlàg függvények családját Skorokhod térnek nevezzük.
dbpedia-owl:thumbnail
dbpedia-owl:wikiPageID
  • 5304458 (xsd:integer)
dbpedia-owl:wikiPageLength
  • 6801 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 27 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 103902715 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
prop-fr:année
  • 1995 (xsd:integer)
  • 1999 (xsd:integer)
prop-fr:auteur
  • Billingsley, Patrick
prop-fr:fr
  • Famille tendue de mesures
prop-fr:isbn
  • 978 (xsd:integer)
prop-fr:lang
  • en
prop-fr:langue
  • anglais
prop-fr:lccn
  • 94028500 (xsd:integer)
  • 99030372 (xsd:integer)
prop-fr:lieu
  • New York, NY
prop-fr:numéroD'édition
  • 2 (xsd:integer)
  • 3 (xsd:integer)
prop-fr:texte
  • tendue
prop-fr:titre
  • Convergence of Probability Measures
  • Probability and Measure
prop-fr:trad
  • Tightness of measures
prop-fr:wikiPageUsesTemplate
prop-fr:éditeur
  • John Wiley & Sons, Inc.
dcterms:subject
rdfs:comment
  • En mathématiques, une fonction càdlàg (continue à droite, limite à gauche) est une fonction définie sur un ensemble E de nombres réels qui est continue à droite en tout point de E et admet une limite à gauche en tout point de E. Les fonctions càdlàg sont importantes dans l'étude des processus stochastiques qui sont notamment des processus à sauts. L'ensemble des fonctions càdlàg est appelé l'espace de Skorokhod.Il est à noter que la notation càdlàg est utilisée internationalement.
  • In matematica, una funzione càdlàg (acronimo dal francese continue à droite, limitée à gauche, che significa continua a destra, limitata a sinistra) o più semplicemente (ma erroneamente) cadlag è una funzione di variabile reale che sia in ogni punto continua da destra e possegga limite sinistro finito.Le funzioni càdlàg sono importanti nello studio dei processi stocastici che ammettono traiettorie con discontinuità di prima specie.
  • In mathematics, a càdlàg (French "continue à droite, limite à gauche"), RCLL (“right continuous with left limits”), or corlol (“continuous on (the) right, limit on (the) left”) function is a function defined on the real numbers (or a subset of them) that is everywhere right-continuous and has left limits everywhere. Càdlàg functions are important in the study of stochastic processes that admit (or even require) jumps, unlike Brownian motion, which has continuous sample paths.
  • Na matemática, uma função càdlàg (do francês "continue à droite, limite à gauche"), corlol (do inglês “continuous on (the) right, limit on (the) left”), ou càdlàe (continua à direita, limite à esquerda, tradução literal para português) é uma definida nos números reais (ou um sub-conjunto dos mesmos) que é, em qualquer localização, contínua à direita e com limite à esquerda.
  • A matematikában a càdlàg (francia: "continue à droite, limitée à gauche" kifejezés), RCLL (angol: "right continous with left limits") vagy corlol ("continous on (the) right, limit on (the) left") mind az olyan valós számokon (vagy azok egy részhalmazán) értelmezett folytonos függvények jelölésére szolgáló rövidítés, amelyek az értelmezési tartományuk valamennyi pontjában jobbról folytonosak és ugyanitt létezik a bal oldali határértékük.
rdfs:label
  • Càdlàg
  • Càdlàg
  • Càdlàg
  • Càdlàg
  • Càdlàg
  • Funzione càdlàg
owl:sameAs
http://www.w3.org/ns/prov#wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbpedia-owl:wikiPageWikiLink of
is foaf:primaryTopic of