En mathématiques, un bouquet, ou wedge, est une réunion d'espaces topologiques pointés qui identifie leurs points de base.Cette notion est à la base de la construction des CW-complexes. Elle constitue aussi le coproduit dans la catégorie des espaces pointés, c'est pourquoi on l'appelle également « somme pointée ».↑ Daniel Tanré et Yves Félix, Topologie algébrique - Cours et exercices corrigés, Dunod,‎ 2010 (ISBN 978-2-10055642-7, lire en ligne), p.

PropertyValue
dbpedia-owl:abstract
  • En mathématiques, un bouquet, ou wedge, est une réunion d'espaces topologiques pointés qui identifie leurs points de base.Cette notion est à la base de la construction des CW-complexes. Elle constitue aussi le coproduit dans la catégorie des espaces pointés, c'est pourquoi on l'appelle également « somme pointée ».
  • In topology, the wedge sum is a "one-point union" of a family of topological spaces. Specifically, if X and Y are pointed spaces (i.e. topological spaces with distinguished basepoints x0 and y0) the wedge sum of X and Y is the quotient space of the disjoint union of X and Y by the identification x0 ∼ y0:where ∼ is the equivalence closure of the relation {(x0,y0)}.More generally, suppose (Xi )i∈I is a family of pointed spaces with basepoints {pi }. The wedge sum of the family is given by:where ∼ is the equivalence relation {(pi , pj ) | i,j ∈ I }.In other words, the wedge sum is the joining of several spaces at a single point. This definition is sensitive to the choice of the basepoints {pi}, unless the spaces {Xi } are homogeneous.The wedge sum is again a pointed space, and the binary operation is associative and commutative (up to isomorphism).Sometimes the wedge sum is called the wedge product, but this is not the same concept as the exterior product, which is also often called the wedge product.
  • In topologia, il bouquet di un insieme di spazi topologici è lo spazio che si ottiene "attaccando" tutti questi spazi per un punto.
  • 위상수학에서, 쐐기합(영어: wedge sum)은 두 위상공간을 한 점에서 붙이는 연산이다.
dbpedia-owl:wikiPageID
  • 5156381 (xsd:integer)
dbpedia-owl:wikiPageLength
  • 1171 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 11 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 90820020 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • En mathématiques, un bouquet, ou wedge, est une réunion d'espaces topologiques pointés qui identifie leurs points de base.Cette notion est à la base de la construction des CW-complexes. Elle constitue aussi le coproduit dans la catégorie des espaces pointés, c'est pourquoi on l'appelle également « somme pointée ».↑ Daniel Tanré et Yves Félix, Topologie algébrique - Cours et exercices corrigés, Dunod,‎ 2010 (ISBN 978-2-10055642-7, lire en ligne), p.
  • In topologia, il bouquet di un insieme di spazi topologici è lo spazio che si ottiene "attaccando" tutti questi spazi per un punto.
  • 위상수학에서, 쐐기합(영어: wedge sum)은 두 위상공간을 한 점에서 붙이는 연산이다.
  • In topology, the wedge sum is a "one-point union" of a family of topological spaces. Specifically, if X and Y are pointed spaces (i.e. topological spaces with distinguished basepoints x0 and y0) the wedge sum of X and Y is the quotient space of the disjoint union of X and Y by the identification x0 ∼ y0:where ∼ is the equivalence closure of the relation {(x0,y0)}.More generally, suppose (Xi )i∈I is a family of pointed spaces with basepoints {pi }.
rdfs:label
  • Bouquet (mathématiques)
  • Bouquet (topologia)
  • Bukiet (topologia)
  • Wedge sum
  • Wedge-Produkt (Topologie)
  • 쐐기합
owl:sameAs
http://www.w3.org/ns/prov#wasDerivedFrom
foaf:isPrimaryTopicOf
is dbpedia-owl:wikiPageDisambiguates of
is dbpedia-owl:wikiPageRedirects of
is dbpedia-owl:wikiPageWikiLink of
is foaf:primaryTopic of